Bin Liang, Dong Wang, Yujing Jiang, Hengjie Luan, Jiankang Liu, Jianlong Wang
{"title":"Analysis of fracture modes and acoustic emission characteristics of low-frequency disturbed coal rock bodies with different cyclic amplitudes","authors":"Bin Liang, Dong Wang, Yujing Jiang, Hengjie Luan, Jiankang Liu, Jianlong Wang","doi":"10.1111/ffe.14434","DOIUrl":null,"url":null,"abstract":"<p>Frequent mining operations significantly disturb the security of deep weakly cemented rock roadways in western mining areas, constituting one of the primary causes of deformation, instability, and failure within the coal-rock body. In this paper, dynamic uniaxial compression tests of soft rock-coal combinations under low-frequency disturbance with different cyclic amplitudes were conducted based on acoustic emission to elucidate fracture modes. The findings are as follows: Different cycle amplitudes manifested significant degradation effects on the soft rock-coal combination. With increasing cycle amplitude, the proportion of tensile cracks initially decreased before subsequently increasing, demonstrating a general upward trajectory. The sudden increase in the acoustic emission RA value, the large decrease in the b-value, and AE counts reaching the peak mean that failure and destabilization of the specimen begin to occur. The results of this study will furnish theoretical direction for dynamic disaster monitoring and early warning in soft rock mines located in western mining regions.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 12","pages":"4412-4431"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14434","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Frequent mining operations significantly disturb the security of deep weakly cemented rock roadways in western mining areas, constituting one of the primary causes of deformation, instability, and failure within the coal-rock body. In this paper, dynamic uniaxial compression tests of soft rock-coal combinations under low-frequency disturbance with different cyclic amplitudes were conducted based on acoustic emission to elucidate fracture modes. The findings are as follows: Different cycle amplitudes manifested significant degradation effects on the soft rock-coal combination. With increasing cycle amplitude, the proportion of tensile cracks initially decreased before subsequently increasing, demonstrating a general upward trajectory. The sudden increase in the acoustic emission RA value, the large decrease in the b-value, and AE counts reaching the peak mean that failure and destabilization of the specimen begin to occur. The results of this study will furnish theoretical direction for dynamic disaster monitoring and early warning in soft rock mines located in western mining regions.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.