Fei Wang, Qile Chen, Botao Jing, Yeling Tang, Zengren Song, Bo Wang
{"title":"Deepfake Detection Based on the Adaptive Fusion of Spatial-Frequency Features","authors":"Fei Wang, Qile Chen, Botao Jing, Yeling Tang, Zengren Song, Bo Wang","doi":"10.1155/2024/7578036","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Detecting deepfake media remains an ongoing challenge, particularly as forgery techniques rapidly evolve and become increasingly diverse. Existing face forgery detection models typically attempt to discriminate fake images by identifying either spatial artifacts (e.g., generative distortions and blending inconsistencies) or predominantly frequency-based artifacts (e.g., GAN fingerprints). However, a singular focus on a single type of forgery cue can lead to limited model performance. In this work, we propose a novel cross-domain approach that leverages a combination of both spatial and frequency-aware cues to enhance deepfake detection. First, we extract wavelet features using wavelet transformation and residual features using a specialized frequency domain filter. These complementary feature representations are then concatenated to obtain a composite frequency domain feature set. Furthermore, we introduce an adaptive feature fusion module that integrates the RGB color features of the image with the composite frequency domain features, resulting in a rich, multifaceted set of classification features. Extensive experiments conducted on benchmark deepfake detection datasets demonstrate the effectiveness of our method. Notably, the accuracy of our method on the challenging FF++ dataset is mostly above 98%, showcasing its strong performance in reliably identifying deepfake images across diverse forgery techniques.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7578036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7578036","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting deepfake media remains an ongoing challenge, particularly as forgery techniques rapidly evolve and become increasingly diverse. Existing face forgery detection models typically attempt to discriminate fake images by identifying either spatial artifacts (e.g., generative distortions and blending inconsistencies) or predominantly frequency-based artifacts (e.g., GAN fingerprints). However, a singular focus on a single type of forgery cue can lead to limited model performance. In this work, we propose a novel cross-domain approach that leverages a combination of both spatial and frequency-aware cues to enhance deepfake detection. First, we extract wavelet features using wavelet transformation and residual features using a specialized frequency domain filter. These complementary feature representations are then concatenated to obtain a composite frequency domain feature set. Furthermore, we introduce an adaptive feature fusion module that integrates the RGB color features of the image with the composite frequency domain features, resulting in a rich, multifaceted set of classification features. Extensive experiments conducted on benchmark deepfake detection datasets demonstrate the effectiveness of our method. Notably, the accuracy of our method on the challenging FF++ dataset is mostly above 98%, showcasing its strong performance in reliably identifying deepfake images across diverse forgery techniques.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.