Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Seoyeong Choe, Geun-Hye Yu, Myoungki Song, Sea-Ho Oh, Hajeong Jeon, Dong-Hoon Ko, Min-Suk Bae
{"title":"Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea","authors":"Seoyeong Choe,&nbsp;Geun-Hye Yu,&nbsp;Myoungki Song,&nbsp;Sea-Ho Oh,&nbsp;Hajeong Jeon,&nbsp;Dong-Hoon Ko,&nbsp;Min-Suk Bae","doi":"10.1007/s10874-024-09465-y","DOIUrl":null,"url":null,"abstract":"<div><p>PM<sub>2.5</sub> samples were collected in Suncheon during the summer (June 2–11, 2023) and winter (January 15–21, 2024). The chemical composition analysis included carbonaceous components (OC, EC), secondary ionic components (NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>), dithiothreitol - oxidative potential (QDTT-OP), and volatile organic compounds. Results showed higher summer PM<sub>2.5</sub> concentrations due to photochemical reactions and higher winter concentrations from heating and stable atmospheric conditions. The OC/EC ratio indicated greater secondary organic aerosol formation in summer. Oxidative potential (QDTT-OP<sub>v</sub>) was higher in summer (0.12 µM/m³) than winter (0.09 µM/m³), correlating strongly with OC in summer. Health risk assessment of BTEX revealed higher concentrations in winter, with benzene as the primary contributor to lifetime cancer risk (LTCR). The cumulative hazard quotient (HQ) was higher in winter, indicating increased non-carcinogenic risk. The study highlighted that oxidative potential is more influenced by chemical composition than physical characteristics, suggesting that regulating PM<sub>2.5</sub> concentration alone may be insufficient. VOCs, as precursors of SOA, showed a positive correlation with QDTT-OP<sub>v</sub>, with benzene exhibiting the strongest correlation in winter. These findings emphasize the need for targeted management of specific PM<sub>2.5</sub> components to mitigate health risks effectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-024-09465-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

PM2.5 samples were collected in Suncheon during the summer (June 2–11, 2023) and winter (January 15–21, 2024). The chemical composition analysis included carbonaceous components (OC, EC), secondary ionic components (NH4+, NO3, SO42−), dithiothreitol - oxidative potential (QDTT-OP), and volatile organic compounds. Results showed higher summer PM2.5 concentrations due to photochemical reactions and higher winter concentrations from heating and stable atmospheric conditions. The OC/EC ratio indicated greater secondary organic aerosol formation in summer. Oxidative potential (QDTT-OPv) was higher in summer (0.12 µM/m³) than winter (0.09 µM/m³), correlating strongly with OC in summer. Health risk assessment of BTEX revealed higher concentrations in winter, with benzene as the primary contributor to lifetime cancer risk (LTCR). The cumulative hazard quotient (HQ) was higher in winter, indicating increased non-carcinogenic risk. The study highlighted that oxidative potential is more influenced by chemical composition than physical characteristics, suggesting that regulating PM2.5 concentration alone may be insufficient. VOCs, as precursors of SOA, showed a positive correlation with QDTT-OPv, with benzene exhibiting the strongest correlation in winter. These findings emphasize the need for targeted management of specific PM2.5 components to mitigate health risks effectively.

Graphical Abstract

大韩民国顺天工业区夏季和冬季一天中的时间与含碳 PM2.5 和氧化潜能值之间的关系
在夏季(2023 年 6 月 2 日至 11 日)和冬季(2024 年 1 月 15 日至 21 日)在顺天采集了 PM2.5 样品。化学成分分析包括碳质成分(OC、EC)、二次离子成分(NH4+、NO3-、SO42-)、二硫苏糖醇-氧化电位(QDTT-OP)和挥发性有机化合物。结果显示,光化学反应导致夏季 PM2.5 浓度较高,而供暖和稳定的大气条件导致冬季 PM2.5 浓度较高。OC/EC 比率表明夏季形成的二次有机气溶胶更多。夏季的氧化电位(QDTT-OPv)(0.12 µM/m³)高于冬季(0.09 µM/m³),与夏季的有机碳密切相关。对 BTEX 的健康风险评估显示,冬季的浓度较高,苯是导致终生癌症风险 (LTCR) 的主要因素。冬季的累积危害商数(HQ)较高,表明非致癌风险增加。该研究强调,氧化潜能受化学成分而非物理特性的影响更大,这表明仅调节 PM2.5 浓度可能是不够的。作为 SOA 前体的挥发性有机化合物与 QDTT-OPv 呈正相关,其中苯在冬季的相关性最强。这些发现强调了有必要对特定的 PM2.5 成分进行有针对性的管理,以有效降低健康风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信