Synthetic data generation with hybrid quantum-classical models for the financial sector

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Otto M. Pires, Mauro Q. Nooblath, Yan Alef C. Silva, Maria Heloísa F. da Silva, Lucas Q. Galvão, Anton S. Albino
{"title":"Synthetic data generation with hybrid quantum-classical models for the financial sector","authors":"Otto M. Pires,&nbsp;Mauro Q. Nooblath,&nbsp;Yan Alef C. Silva,&nbsp;Maria Heloísa F. da Silva,&nbsp;Lucas Q. Galvão,&nbsp;Anton S. Albino","doi":"10.1140/epjb/s10051-024-00786-1","DOIUrl":null,"url":null,"abstract":"<p>Data integrity and privacy are critical concerns in the financial sector. Traditional methods of data collection face challenges due to privacy regulations and time-consuming anonymization processes. In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network (HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome underscores the current limitations of quantum-inspired methods in handling the complexities of financial datasets.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 11","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00786-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00786-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Data integrity and privacy are critical concerns in the financial sector. Traditional methods of data collection face challenges due to privacy regulations and time-consuming anonymization processes. In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network (HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome underscores the current limitations of quantum-inspired methods in handling the complexities of financial datasets.

利用量子-经典混合模型为金融业生成合成数据
数据完整性和隐私是金融行业的关键问题。由于隐私法规和耗时的匿名化过程,传统的数据收集方法面临挑战。我们与 Banco BV 合作,训练了一种量子-经典混合生成对抗网络(HQGAN),其中量子电路作为生成器,经典神经网络作为判别器,从而高效、安全地生成合成金融数据。我们通过评估损失收敛性以及合成数据与真实数据之间的 MSE 距离,将我们提出的 HQGAN 模型与完全经典的 GAN 模型进行了比较。尽管 HQGAN 最初很有希望,但我们的评估结果表明,HQGAN 无法达到理解金融数据中错综复杂的模式所需的准确性。这一结果凸显了量子启发方法目前在处理复杂金融数据集方面的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信