{"title":"Hydrochemical stratigraphic analysis of the filling of the Meirama open pit mine II: parameters and elements","authors":"Ricardo Juncosa, Jorge Delgado, José Luis Cereijo","doi":"10.1007/s12665-024-11972-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the first article, entitled <i>“Hydrochemical stratigraphic analysis of the filling of the Meirama open pit mine I: Monitoring and filling</i>” (Juncosa et al. Environ Sci Pollut Res 20(11):7520–7533, 2013), the filling process of the old Meirama mining pit (NW Spain), as well as the methodology used in the sample collection and analysis, was described. Likewise, the evolution of the temperature, pH, dissolved oxygen, iron, and manganese in the filling and postfilling processes are shown. This second article presents the temporal evolution of other major components and nutrients during the filling period (2008–2016) and postfilling period (2016–2019). The continuation of the analysis initiated in the aforementioned article is done at certain heights of the vertical profiles monitored at the midpoint of the lake (the surface, the first 2 m of depth with respect to the surface (2 mbs), at 59 masl, and at the bottom (2 masl)). As explained in the filling process, an invariant chemocline and a seasonal thermocline near the water surface are formed. Therefore, the analysis encompasses not only the bottom and surface of the lake but also includes an intermediate point where the chemocline is found. Based on the analysis carried out, it has been possible to verify that the most superficial waters (80 m) are in line with the geological and fluvial environment of the basin, so that the stored waters do not need a special physicochemical treatment. However, at deeper levels, anoxization processes are developing, a step prior to the methanization of the lake bottom.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 23","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11972-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the first article, entitled “Hydrochemical stratigraphic analysis of the filling of the Meirama open pit mine I: Monitoring and filling” (Juncosa et al. Environ Sci Pollut Res 20(11):7520–7533, 2013), the filling process of the old Meirama mining pit (NW Spain), as well as the methodology used in the sample collection and analysis, was described. Likewise, the evolution of the temperature, pH, dissolved oxygen, iron, and manganese in the filling and postfilling processes are shown. This second article presents the temporal evolution of other major components and nutrients during the filling period (2008–2016) and postfilling period (2016–2019). The continuation of the analysis initiated in the aforementioned article is done at certain heights of the vertical profiles monitored at the midpoint of the lake (the surface, the first 2 m of depth with respect to the surface (2 mbs), at 59 masl, and at the bottom (2 masl)). As explained in the filling process, an invariant chemocline and a seasonal thermocline near the water surface are formed. Therefore, the analysis encompasses not only the bottom and surface of the lake but also includes an intermediate point where the chemocline is found. Based on the analysis carried out, it has been possible to verify that the most superficial waters (80 m) are in line with the geological and fluvial environment of the basin, so that the stored waters do not need a special physicochemical treatment. However, at deeper levels, anoxization processes are developing, a step prior to the methanization of the lake bottom.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.