{"title":"Comprehensive energy footprint of electrified fleets: School bus fleet case study","authors":"Joon Moon , Athar Hanif , Qadeer Ahmed","doi":"10.1016/j.etran.2024.100379","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a comprehensive framework for estimating the energy footprint and benefits of electrified vehicle fleets prior to their deployment. To support this analysis, it introduces a control-oriented electric bus simulator model that not only captures driving power requirements but also incorporates a thermal model for cabin behavior and a Heating Ventilation and Air Conditioning (HVAC) system for heating and cooling. By analyzing current bus routes and road terrain data, the energy demand and economic effects are estimated, taking into account the current operational characteristics of school buses. As a case study, it examines the potential advantages of electrifying school bus fleets in the Central School District in Ohio, USA, with a focus on energy savings and environmental impact reduction. Our findings suggest that transitioning to electric school buses could achieve up to 76% energy savings compared to gasoline buses and 67% energy savings compared to diesel buses. Economically, when converted to operational costs, this results in a savings of 52%–65% compared to gasoline and 27%–47% compared to diesel, depending on the specific price rate. The accuracy of our model is calibrated using actual operational data from school bus fleets. Furthermore, this study provides foundational insights into the charging requirements through the energy footprint analysis. This study contributes to the advancement of sustainable transportation by presenting comprehensive preliminary analysis results for vehicle electrification through a specific case study. It emphasizes the practical implementation of electric school buses and optimized vehicle efficiency, aligning with broader eco-friendly initiatives in the transportation sector.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100379"},"PeriodicalIF":15.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000699","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a comprehensive framework for estimating the energy footprint and benefits of electrified vehicle fleets prior to their deployment. To support this analysis, it introduces a control-oriented electric bus simulator model that not only captures driving power requirements but also incorporates a thermal model for cabin behavior and a Heating Ventilation and Air Conditioning (HVAC) system for heating and cooling. By analyzing current bus routes and road terrain data, the energy demand and economic effects are estimated, taking into account the current operational characteristics of school buses. As a case study, it examines the potential advantages of electrifying school bus fleets in the Central School District in Ohio, USA, with a focus on energy savings and environmental impact reduction. Our findings suggest that transitioning to electric school buses could achieve up to 76% energy savings compared to gasoline buses and 67% energy savings compared to diesel buses. Economically, when converted to operational costs, this results in a savings of 52%–65% compared to gasoline and 27%–47% compared to diesel, depending on the specific price rate. The accuracy of our model is calibrated using actual operational data from school bus fleets. Furthermore, this study provides foundational insights into the charging requirements through the energy footprint analysis. This study contributes to the advancement of sustainable transportation by presenting comprehensive preliminary analysis results for vehicle electrification through a specific case study. It emphasizes the practical implementation of electric school buses and optimized vehicle efficiency, aligning with broader eco-friendly initiatives in the transportation sector.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.