Yuanlang Zhao , Xiao Zhang , Fan Li , Hengji Zhang , Bo Li , Xingke Chang
{"title":"Effect of naphthenic oil and viscosity reduction process on fatigue life and rheological properties of crumb rubber modified asphalt","authors":"Yuanlang Zhao , Xiao Zhang , Fan Li , Hengji Zhang , Bo Li , Xingke Chang","doi":"10.1016/j.conbuildmat.2024.139201","DOIUrl":null,"url":null,"abstract":"<div><div>Crumb rubber modified asphalt (CRMA) has garnered attention for its superior low-temperature crack resistance, yet its high viscosity hinders practical application. Naphthenic oil (NO), employed as a viscosity-reducing agent, effectively lowers CRMA viscosity, but its influence on CRMA's fatigue and rheological properties remains unclear. This study prepares viscosity-reduced CRMA via both non-swelling and pre-swelling processes, assessing the impact of NO and the viscosity reduction processes on CRMA's fatigue life at −12°C, 25°C, and 65°C. Fourier Transform Infrared Spectroscopy (FTIR) and Molecular Dynamics (MD) simulations analyze the mechanism of NO action from a molecular energy perspective. Results show that NO and the reduction process affect the loss of polar functional groups and molecular energy in CRMA, thereby altering its fatigue life. Specifically, at −12°C, NO enhances CRMA's fatigue life, while the pre-swelling process decreases it. At 25°C, both NO and pre-swelling improve CRMA's fatigue life, but at 65°C, they diminish it. Furthermore, the coverage of CRMA surfaces by NO molecules and the poor gradation of rubber particles reduce CRMA's high-temperature deformation resistance but enhance low-temperature crack resistance. The pre-swelling process, compared to the non-swelling one, strengthens CRMA's rheological properties at both high and low temperatures.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139201"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824043435","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Crumb rubber modified asphalt (CRMA) has garnered attention for its superior low-temperature crack resistance, yet its high viscosity hinders practical application. Naphthenic oil (NO), employed as a viscosity-reducing agent, effectively lowers CRMA viscosity, but its influence on CRMA's fatigue and rheological properties remains unclear. This study prepares viscosity-reduced CRMA via both non-swelling and pre-swelling processes, assessing the impact of NO and the viscosity reduction processes on CRMA's fatigue life at −12°C, 25°C, and 65°C. Fourier Transform Infrared Spectroscopy (FTIR) and Molecular Dynamics (MD) simulations analyze the mechanism of NO action from a molecular energy perspective. Results show that NO and the reduction process affect the loss of polar functional groups and molecular energy in CRMA, thereby altering its fatigue life. Specifically, at −12°C, NO enhances CRMA's fatigue life, while the pre-swelling process decreases it. At 25°C, both NO and pre-swelling improve CRMA's fatigue life, but at 65°C, they diminish it. Furthermore, the coverage of CRMA surfaces by NO molecules and the poor gradation of rubber particles reduce CRMA's high-temperature deformation resistance but enhance low-temperature crack resistance. The pre-swelling process, compared to the non-swelling one, strengthens CRMA's rheological properties at both high and low temperatures.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.