{"title":"Modified procedure for assessing the bending strength of composite GFRP poles","authors":"Filip Broniewicz, Mirosław Broniewicz","doi":"10.1016/j.conbuildmat.2024.139182","DOIUrl":null,"url":null,"abstract":"<div><div>Fibreglass lighting poles have gained a considerable amount of popularity in the market due to their advantages, and interest in them continues to grow. Consequently, the challenge of ensuring their safe design is becoming increasingly important. However, the current standard design procedure is not sufficient, because it does not consider one of the most common failure modes of composite poles, namely local buckling in the vicinity of the inspection opening. A verification of the standard’s calculated values has been done with the use of experimental testing. The calculated design bending strength was three times higher than the actual bending strength for 3.0 m high poles and twice higher for 9.0 m high poles. This paper proposes an improved method for estimating the bending resistance of composite poles with inspection openings. The method was developed using results from tests on full-scale poles, material sample tests, and experiments in a FEM environment. The proposed method provides more accurate results than the procedure for assessing the bending strength of these poles as presented in the EN 40–3–3 standard. The bending resistance value obtained using the modified calculation method is higher than the experimental value by an average of 6.6 %.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139182"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824043241","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibreglass lighting poles have gained a considerable amount of popularity in the market due to their advantages, and interest in them continues to grow. Consequently, the challenge of ensuring their safe design is becoming increasingly important. However, the current standard design procedure is not sufficient, because it does not consider one of the most common failure modes of composite poles, namely local buckling in the vicinity of the inspection opening. A verification of the standard’s calculated values has been done with the use of experimental testing. The calculated design bending strength was three times higher than the actual bending strength for 3.0 m high poles and twice higher for 9.0 m high poles. This paper proposes an improved method for estimating the bending resistance of composite poles with inspection openings. The method was developed using results from tests on full-scale poles, material sample tests, and experiments in a FEM environment. The proposed method provides more accurate results than the procedure for assessing the bending strength of these poles as presented in the EN 40–3–3 standard. The bending resistance value obtained using the modified calculation method is higher than the experimental value by an average of 6.6 %.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.