{"title":"Microchannel heat sinks for hotspot thermal management: achieving minimal pressure drop and maximal thermal performance","authors":"Biqi Cao , Zan Wu","doi":"10.1016/j.ijheatmasstransfer.2024.126411","DOIUrl":null,"url":null,"abstract":"<div><div>In hotspot regions, where heat flux can reach several orders of magnitude higher than in surrounding area, managing hotspot temperatures becomes a prominent issue. This study introduces three innovative heat sink designs that effectively manage high temperatures in hotspot regions while minimizing power consumption. The hydraulic and thermal performances of these designs were evaluated numerically and compared with those of the conventional straight parallel microchannel (SPMC) heat sink and previous designs from the literature. By integrating pin-fins in hotspot regions and positioning the fluid inlet above the hotspot to leverage jet impingement, these designs significantly improved the heat transfer coefficient in hotspot areas. The MMC structure, featuring a manifold configuration, achieved an 81.4 % reduction in pressure drop compared to the SPMC design. The RMC structure demonstrated superior temperature uniformity. Additionally, the impact of the jet inlet angle on the hydraulic-thermal performance of the RMC heat sink was investigated. The AMC structure, which integrates the benefits of both RMC and MMC, achieved an impressive 87.9 % reduction in pressure drop compared to the SPMC design, underscoring its advanced performance.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126411"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012407","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In hotspot regions, where heat flux can reach several orders of magnitude higher than in surrounding area, managing hotspot temperatures becomes a prominent issue. This study introduces three innovative heat sink designs that effectively manage high temperatures in hotspot regions while minimizing power consumption. The hydraulic and thermal performances of these designs were evaluated numerically and compared with those of the conventional straight parallel microchannel (SPMC) heat sink and previous designs from the literature. By integrating pin-fins in hotspot regions and positioning the fluid inlet above the hotspot to leverage jet impingement, these designs significantly improved the heat transfer coefficient in hotspot areas. The MMC structure, featuring a manifold configuration, achieved an 81.4 % reduction in pressure drop compared to the SPMC design. The RMC structure demonstrated superior temperature uniformity. Additionally, the impact of the jet inlet angle on the hydraulic-thermal performance of the RMC heat sink was investigated. The AMC structure, which integrates the benefits of both RMC and MMC, achieved an impressive 87.9 % reduction in pressure drop compared to the SPMC design, underscoring its advanced performance.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer