Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties
Lijia Li, Yue Liu, Xiangyun Tan, Fei Teng, Yang Li
{"title":"Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties","authors":"Lijia Li, Yue Liu, Xiangyun Tan, Fei Teng, Yang Li","doi":"10.1016/j.carbpol.2024.122959","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011858","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.