Xinqi Wang , Xincin Cai , Jiwen Hu , Jiayi Li , Ruixiang Zhou , Shudong Lin
{"title":"Green synthesis of soybean oil-derived UV-curable resins for high-resolution 3D printing","authors":"Xinqi Wang , Xincin Cai , Jiwen Hu , Jiayi Li , Ruixiang Zhou , Shudong Lin","doi":"10.1016/j.addma.2024.104543","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of 3D printing technology, it has penetrated various fields. In the context of global oil resource scarcity and increasing emphasis on environmental protection, developing high-performance bio-based 3D printing materials is a crucial means to overcome the limitations of petroleum resources and achieve sustainability. This paper proposed a \"green\" development method for high-performance, sunlight-curable vat photopolymerization 3D printing resins based on soybean oil and itaconic anhydride. Utilizing bio-based itaconic anhydride to replace traditional petroleum-based materials, a novel UV-curable prepolymer, IPESO, with 80.37 % high bio-carbon (<em>C</em><sub>bio</sub>) content and no volatile substances was synthesized. Simultaneously, a series of resins, IPESO-ETPTAx, with high mechanical and thermal properties were obtained utilizing ethoxylated trimethylolpropane triacrylate (ETPTA) as a diluent. Samples printed with IPESO-ETPTA40 achieve a high resolution of 40 µm on the xy-axis. This advanced material has broad application prospects in the field of vat photopolymerization 3D printing and provides a new strategy for the development of plant oil-based vat photopolymerization 3D printing resins.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104543"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221486042400589X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of 3D printing technology, it has penetrated various fields. In the context of global oil resource scarcity and increasing emphasis on environmental protection, developing high-performance bio-based 3D printing materials is a crucial means to overcome the limitations of petroleum resources and achieve sustainability. This paper proposed a "green" development method for high-performance, sunlight-curable vat photopolymerization 3D printing resins based on soybean oil and itaconic anhydride. Utilizing bio-based itaconic anhydride to replace traditional petroleum-based materials, a novel UV-curable prepolymer, IPESO, with 80.37 % high bio-carbon (Cbio) content and no volatile substances was synthesized. Simultaneously, a series of resins, IPESO-ETPTAx, with high mechanical and thermal properties were obtained utilizing ethoxylated trimethylolpropane triacrylate (ETPTA) as a diluent. Samples printed with IPESO-ETPTA40 achieve a high resolution of 40 µm on the xy-axis. This advanced material has broad application prospects in the field of vat photopolymerization 3D printing and provides a new strategy for the development of plant oil-based vat photopolymerization 3D printing resins.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.