Can Peng , Piotr Koniusz , Kaiyu Guo , Brian C. Lovell , Peyman Moghadam
{"title":"Multivariate prototype representation for domain-generalized incremental learning","authors":"Can Peng , Piotr Koniusz , Kaiyu Guo , Brian C. Lovell , Peyman Moghadam","doi":"10.1016/j.cviu.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models often suffer from catastrophic forgetting when fine-tuned with samples of new classes. This issue becomes even more challenging when there is a domain shift between training and testing data. In this paper, we address the critical yet less explored Domain-Generalized Class-Incremental Learning (DGCIL) task. We propose a DGCIL approach designed to memorize old classes, adapt to new classes, and reliably classify objects from unseen domains. Specifically, our loss formulation maintains classification boundaries while suppressing domain-specific information for each class. Without storing old exemplars, we employ knowledge distillation and estimate the drift of old class prototypes as incremental training progresses. Our prototype representations are based on multivariate Normal distributions, with means and covariances continually adapted to reflect evolving model features, providing effective representations for old classes. We then sample pseudo-features for these old classes from the adapted Normal distributions using Cholesky decomposition. Unlike previous pseudo-feature sampling strategies that rely solely on average mean prototypes, our method captures richer semantic variations. Experiments on several benchmarks demonstrate the superior performance of our method compared to the state of the art.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104215"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002960","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning models often suffer from catastrophic forgetting when fine-tuned with samples of new classes. This issue becomes even more challenging when there is a domain shift between training and testing data. In this paper, we address the critical yet less explored Domain-Generalized Class-Incremental Learning (DGCIL) task. We propose a DGCIL approach designed to memorize old classes, adapt to new classes, and reliably classify objects from unseen domains. Specifically, our loss formulation maintains classification boundaries while suppressing domain-specific information for each class. Without storing old exemplars, we employ knowledge distillation and estimate the drift of old class prototypes as incremental training progresses. Our prototype representations are based on multivariate Normal distributions, with means and covariances continually adapted to reflect evolving model features, providing effective representations for old classes. We then sample pseudo-features for these old classes from the adapted Normal distributions using Cholesky decomposition. Unlike previous pseudo-feature sampling strategies that rely solely on average mean prototypes, our method captures richer semantic variations. Experiments on several benchmarks demonstrate the superior performance of our method compared to the state of the art.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems