Effect of grain size and grain boundary type on intergranular stress corrosion cracking of austenitic stainless steel: A phase-field study

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qionghuan Zeng, Yiming Chen, Zhongsheng Yang, Lei Zhang, Zhijun Wang, Lei Wang, Junjie Li, Jincheng Wang
{"title":"Effect of grain size and grain boundary type on intergranular stress corrosion cracking of austenitic stainless steel: A phase-field study","authors":"Qionghuan Zeng,&nbsp;Yiming Chen,&nbsp;Zhongsheng Yang,&nbsp;Lei Zhang,&nbsp;Zhijun Wang,&nbsp;Lei Wang,&nbsp;Junjie Li,&nbsp;Jincheng Wang","doi":"10.1016/j.corsci.2024.112557","DOIUrl":null,"url":null,"abstract":"<div><div>A phase-field model coupled with polycrystalline microstructure is utilized to investigate the effect of grain size and grain boundary types on intergranular stress corrosion cracking in austenitic stainless steels. Considering the dilute solution environment, the free energy density of the two phases is hypothesized to be in parabolic form. The slower corrosion crack propagation rate in coarse-grained microstructures can be attributed to a higher frequency of transgranular cracking. Low-angle grain boundaries can effectively deflect intergranular corrosion cracks into grains with lower corrosion susceptibility, thereby impeding crack propagation. Twin boundaries mitigate corrosion crack propagation by reducing potential initiation sites.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112557"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007534","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A phase-field model coupled with polycrystalline microstructure is utilized to investigate the effect of grain size and grain boundary types on intergranular stress corrosion cracking in austenitic stainless steels. Considering the dilute solution environment, the free energy density of the two phases is hypothesized to be in parabolic form. The slower corrosion crack propagation rate in coarse-grained microstructures can be attributed to a higher frequency of transgranular cracking. Low-angle grain boundaries can effectively deflect intergranular corrosion cracks into grains with lower corrosion susceptibility, thereby impeding crack propagation. Twin boundaries mitigate corrosion crack propagation by reducing potential initiation sites.
晶粒尺寸和晶界类型对奥氏体不锈钢晶间应力腐蚀开裂的影响:相场研究
本研究利用与多晶微观结构相耦合的相场模型来研究晶粒尺寸和晶界类型对奥氏体不锈钢晶间应力腐蚀开裂的影响。考虑到稀溶液环境,假设两相的自由能密度呈抛物线形式。粗晶粒微结构中的腐蚀裂纹扩展速度较慢,这是因为跨晶粒开裂的频率较高。低角度晶界能有效地将晶间腐蚀裂纹偏转到腐蚀敏感性较低的晶粒中,从而阻碍裂纹扩展。双晶界通过减少潜在的起始点来减缓腐蚀裂纹的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信