An empirical model of the kinetics of hydrogen-induced cracking in pipeline steel, using statistical distribution models and considering microstructural characteristics and hydrogen diffusion parameters
IF 7.4 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ehsan Entezari , Jorge Luis González Velázquez , Hojjat Sabzali , Jerzy Szpunar
{"title":"An empirical model of the kinetics of hydrogen-induced cracking in pipeline steel, using statistical distribution models and considering microstructural characteristics and hydrogen diffusion parameters","authors":"Ehsan Entezari , Jorge Luis González Velázquez , Hojjat Sabzali , Jerzy Szpunar","doi":"10.1016/j.corsci.2024.112556","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes an empirical model to predict the kinetics of hydrogen-induced cracking (HIC) growth rate in pipeline steels based on experimentally measured hydrogen diffusion parameters and spatial distribution of microstructural features previously identified to have a role on HIC kinetics. In the experimental work, the HIC was induced by electrochemical cathodic charging and the crack growth was monitored by ultrasonic inspection. Optical and scanning electron microscopy were used to determine the spatial distribution parameters of non-metallic inclusions, and the ferrite grain and second phase characteristics. The hydrogen microprint technique used to visualize hydrogen diffusion path in the microstructure and the hydrogen diffusion parameters were determined by hydrogen permeation tests. Results show that NMI shape affects HIC nucleation sites, using student's t-distribution, while ferrite grain characteristics affect HIC growth rates, with X70–2 and X56 steel plates recorded highest HIC growth rate. The Log-Normal distribution model, supported by statistical analysis, effectively predicts HIC growth rates compared with Weibull and Gamma distribution models.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112556"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007522","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an empirical model to predict the kinetics of hydrogen-induced cracking (HIC) growth rate in pipeline steels based on experimentally measured hydrogen diffusion parameters and spatial distribution of microstructural features previously identified to have a role on HIC kinetics. In the experimental work, the HIC was induced by electrochemical cathodic charging and the crack growth was monitored by ultrasonic inspection. Optical and scanning electron microscopy were used to determine the spatial distribution parameters of non-metallic inclusions, and the ferrite grain and second phase characteristics. The hydrogen microprint technique used to visualize hydrogen diffusion path in the microstructure and the hydrogen diffusion parameters were determined by hydrogen permeation tests. Results show that NMI shape affects HIC nucleation sites, using student's t-distribution, while ferrite grain characteristics affect HIC growth rates, with X70–2 and X56 steel plates recorded highest HIC growth rate. The Log-Normal distribution model, supported by statistical analysis, effectively predicts HIC growth rates compared with Weibull and Gamma distribution models.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.