Chuang Wang , XinFa Yang , HaoLin Zhang , Chi Chen , ZaiQin Zhang , He Li
{"title":"Comprehensive properties analysis of epoxy composites synergistically toughened with liquid nitrile rubber and polyethersulfone","authors":"Chuang Wang , XinFa Yang , HaoLin Zhang , Chi Chen , ZaiQin Zhang , He Li","doi":"10.1016/j.coco.2024.102154","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, epoxy resin (EP) composites with different phase structures were prepared by introducing hydroxyl-terminated liquid nitrile rubber (HTBN) and hydroxyl-terminated polyethersulfone (PES) individually or simultaneously into the resin matrix. The results revealed that the rational distribution of phase structure of rigid PES and flexible HTBN can effectively contributed to the enhancement in their mechanical and electrical insulation strengths. The synergistic effect of the two reinforcing fillers granted the optimized ternary composite a tougher structural network, leading to significant improvements of 73.13 % and 18.98 % in mechanical impact strength and electrical breakdown strength, respectively, compared to the pristine EP. Furthermore, compared to HTBN, PES exhibited inhibited HTBN dielectric interfacial polarization and EP molecular chain segment relaxation, resulting in decreased dielectric constant and loss in the composites. This study provide insights into the dielectric properties and design strategies for the development of resin-based dielectric materials, ensuring their broader applicability.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"52 ","pages":"Article 102154"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003450","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, epoxy resin (EP) composites with different phase structures were prepared by introducing hydroxyl-terminated liquid nitrile rubber (HTBN) and hydroxyl-terminated polyethersulfone (PES) individually or simultaneously into the resin matrix. The results revealed that the rational distribution of phase structure of rigid PES and flexible HTBN can effectively contributed to the enhancement in their mechanical and electrical insulation strengths. The synergistic effect of the two reinforcing fillers granted the optimized ternary composite a tougher structural network, leading to significant improvements of 73.13 % and 18.98 % in mechanical impact strength and electrical breakdown strength, respectively, compared to the pristine EP. Furthermore, compared to HTBN, PES exhibited inhibited HTBN dielectric interfacial polarization and EP molecular chain segment relaxation, resulting in decreased dielectric constant and loss in the composites. This study provide insights into the dielectric properties and design strategies for the development of resin-based dielectric materials, ensuring their broader applicability.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.