{"title":"Crack evolution mechanism of stratified rock mass under different strength ratios and soft layer thickness: Insights from DEM modeling","authors":"Qinji Jia, Xiaoming Liu, Xin Tan","doi":"10.1016/j.sandf.2024.101534","DOIUrl":null,"url":null,"abstract":"<div><div>Research on stratified rock masses, which are common geological formations, has primarily focused on their mechanical properties, while studies on crack evolution and microscopic damage mechanisms remain limited. This study addresses this gap by investigating the combined effects of strength ratios and soft layer thicknesses on the microcrack evolution mechanism of stratified rocks using the discrete element method (DEM). Through FISH language programming in the particle flow code (PFC), this study reveals the acoustic emission (AE) characteristics, crack initiation and propagation, damage degree, and final failure characteristics. The key findings are: (1) Higher strength ratios between the hard and soft components of stratified rocks make specimens more sensitive to increases in soft layer thickness. (2) Three types of AE events were identified: continuous active, intermittent active, and silent. (3) Cracks initiate at the interface between components and propagate along the interface into the rock matrix. The strength ratios determine the crack propagation path and the damage extent of the components. (4) The failure of stratified rocks is primarily controlled by the soft component. Crack connections typically form vertical and sub-vertical tensile failure planes in the hard component, and a shear failure surface with a “V”-shaped intersection in the soft component.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 6","pages":"Article 101534"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001124","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Research on stratified rock masses, which are common geological formations, has primarily focused on their mechanical properties, while studies on crack evolution and microscopic damage mechanisms remain limited. This study addresses this gap by investigating the combined effects of strength ratios and soft layer thicknesses on the microcrack evolution mechanism of stratified rocks using the discrete element method (DEM). Through FISH language programming in the particle flow code (PFC), this study reveals the acoustic emission (AE) characteristics, crack initiation and propagation, damage degree, and final failure characteristics. The key findings are: (1) Higher strength ratios between the hard and soft components of stratified rocks make specimens more sensitive to increases in soft layer thickness. (2) Three types of AE events were identified: continuous active, intermittent active, and silent. (3) Cracks initiate at the interface between components and propagate along the interface into the rock matrix. The strength ratios determine the crack propagation path and the damage extent of the components. (4) The failure of stratified rocks is primarily controlled by the soft component. Crack connections typically form vertical and sub-vertical tensile failure planes in the hard component, and a shear failure surface with a “V”-shaped intersection in the soft component.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.