C. Lohr , A. Trauth , J. Schukraft , S. Leher , K.A. Weidenmann
{"title":"Investigation on the recycling potential of additively manufactured carbon fiber reinforced PA 6.6","authors":"C. Lohr , A. Trauth , J. Schukraft , S. Leher , K.A. Weidenmann","doi":"10.1016/j.compstruct.2024.118683","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber reinforced polymers (CFRP) are already used in a wide range of applications such as automotive, aerospace and renewable energy industries and demand on this material class is increasing steadily. As demand increases, the amount of CFRP waste, either from production or at the end of life of components, increases simultaneously and sustainable solutions such as disposal, reuse or recycling of fiber reinforced materials getting more and more important.</div><div>In this paper one possibility for recycling short carbon fiber reinforced polyamide 6.6 (CF/PA 6.6) is presented. The recycling process includes shredding of the material, drying and filament extrusion to enable a reuse of the material with an additive manufacturing process. The focus of this investigation is on the mechanical properties of the recycled filaments itself as well as on the 3D printed specimen considered recycled filaments. The properties at different stages of the short carbon fiber reinforced polyamide 6.6 recycling process were investigated, including the juvenile CF/PA 6.6 as well as specimens made from one- or two-times recycled material. Mechanical performance was evaluated by tensile, bending and impact testing. Experimental results pointed out that no significant difference in performance of juvenile and recycled materials was observed for tensile and flexural loads. The impact strength of the recycled specimen decreased to a small extent.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118683"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008110","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced polymers (CFRP) are already used in a wide range of applications such as automotive, aerospace and renewable energy industries and demand on this material class is increasing steadily. As demand increases, the amount of CFRP waste, either from production or at the end of life of components, increases simultaneously and sustainable solutions such as disposal, reuse or recycling of fiber reinforced materials getting more and more important.
In this paper one possibility for recycling short carbon fiber reinforced polyamide 6.6 (CF/PA 6.6) is presented. The recycling process includes shredding of the material, drying and filament extrusion to enable a reuse of the material with an additive manufacturing process. The focus of this investigation is on the mechanical properties of the recycled filaments itself as well as on the 3D printed specimen considered recycled filaments. The properties at different stages of the short carbon fiber reinforced polyamide 6.6 recycling process were investigated, including the juvenile CF/PA 6.6 as well as specimens made from one- or two-times recycled material. Mechanical performance was evaluated by tensile, bending and impact testing. Experimental results pointed out that no significant difference in performance of juvenile and recycled materials was observed for tensile and flexural loads. The impact strength of the recycled specimen decreased to a small extent.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.