Bin Yang , Cédric Béguin , Philippe Causse , Yuwei Feng , Jihui Wang
{"title":"Tomographic modeling and internal structure analysis of engineering textiles: A parametric approach","authors":"Bin Yang , Cédric Béguin , Philippe Causse , Yuwei Feng , Jihui Wang","doi":"10.1016/j.compstruct.2024.118679","DOIUrl":null,"url":null,"abstract":"<div><div>Tomographic modeling of textiles is attractive for numerical investigation of composites due to its ability to reveal the internal architecture. However, reliability is notably dependent on geometrical modeling accuracy, which is still challenging. This paper addresses existing issues using a parametric approach that relies on statistical resampling and spatial autocorrelated prediction. The proposed strategy involves three stages: first, an explicit representation of each fiber tow is derived from the segmented images through statistical resampling in the parametric domain, which is subsequently mapped back to the physical domain according to known spatial autocorrelation. It allows depicting tow surfaces with varying levels of detail. Second, the tow trajectory is parameterized and subjected to a smoothing process, thereby identifying the local fiber orientation as its tangent vector. Finally, the normal cross-sections of tows are solved as intersecting implicit planes with a parametric tubular surface thanks to the parametric representation. This allows evaluating the spatial architectural variability in tows with notable waviness. Examinations were performed by contrasting the proposed approach with existing techniques. This new approach demonstrated better consistency with the ground truth while bringing additional benefits to the geometry reconstruction.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118679"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008079","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Tomographic modeling of textiles is attractive for numerical investigation of composites due to its ability to reveal the internal architecture. However, reliability is notably dependent on geometrical modeling accuracy, which is still challenging. This paper addresses existing issues using a parametric approach that relies on statistical resampling and spatial autocorrelated prediction. The proposed strategy involves three stages: first, an explicit representation of each fiber tow is derived from the segmented images through statistical resampling in the parametric domain, which is subsequently mapped back to the physical domain according to known spatial autocorrelation. It allows depicting tow surfaces with varying levels of detail. Second, the tow trajectory is parameterized and subjected to a smoothing process, thereby identifying the local fiber orientation as its tangent vector. Finally, the normal cross-sections of tows are solved as intersecting implicit planes with a parametric tubular surface thanks to the parametric representation. This allows evaluating the spatial architectural variability in tows with notable waviness. Examinations were performed by contrasting the proposed approach with existing techniques. This new approach demonstrated better consistency with the ground truth while bringing additional benefits to the geometry reconstruction.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.