Felipe D. Sepúlveda , Lorena A. Cortes , María P. Arancibia-Bravo , José Delgado , Freddy A. Lucay , Carlos Chacana , Felipe Galleguillos , Cesar Castellón
{"title":"Optimizing flotation circuits: A comprehensive approach using design of experiments and stochastic simulation in cycle test validation","authors":"Felipe D. Sepúlveda , Lorena A. Cortes , María P. Arancibia-Bravo , José Delgado , Freddy A. Lucay , Carlos Chacana , Felipe Galleguillos , Cesar Castellón","doi":"10.1016/j.mineng.2024.108978","DOIUrl":null,"url":null,"abstract":"<div><div>Cycle flotation tests have been preferred for obtaining metallurgical projections based on laboratory flotation tests because they can simulate a continuous circuit similar to real flotation plants. However, cycle tests are typically conducted in the laboratory under a limited number of operating conditions, so the behavior of ores in these tests might only partially represent the complexity and variations seen in industry-scale flotation operations. To address this limitation, the current work introduces a methodology that integrates cycle tests with the design of experiments (DoE) and response surface methodology (RSM), as well as stochastic simulation to expand the range of tested conditions and identify optimal regions. The methodology involves four stages: definition and preliminary analysis, construction of metamodels, stochastic simulation, and experimental validation. The proposed approach is illustrated through closed/open cycle tests, covering flotation circuits with rougher, cleaner, and scavenger stages. Various output variables are evaluated, such as weight recovery, overall recovery, kinetics, and concentrate and tail grade. The study reveals that polynomial models were inefficient in fitting the experimental data accurately, leading to the use of Monte Carlo simulation to predict closed-cycle test results, which were later validated experimentally. Ultimately, this research provides valuable recommendations for the appropriate application of DoE and RSM in mineral processing.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"219 ","pages":"Article 108978"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004072","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cycle flotation tests have been preferred for obtaining metallurgical projections based on laboratory flotation tests because they can simulate a continuous circuit similar to real flotation plants. However, cycle tests are typically conducted in the laboratory under a limited number of operating conditions, so the behavior of ores in these tests might only partially represent the complexity and variations seen in industry-scale flotation operations. To address this limitation, the current work introduces a methodology that integrates cycle tests with the design of experiments (DoE) and response surface methodology (RSM), as well as stochastic simulation to expand the range of tested conditions and identify optimal regions. The methodology involves four stages: definition and preliminary analysis, construction of metamodels, stochastic simulation, and experimental validation. The proposed approach is illustrated through closed/open cycle tests, covering flotation circuits with rougher, cleaner, and scavenger stages. Various output variables are evaluated, such as weight recovery, overall recovery, kinetics, and concentrate and tail grade. The study reveals that polynomial models were inefficient in fitting the experimental data accurately, leading to the use of Monte Carlo simulation to predict closed-cycle test results, which were later validated experimentally. Ultimately, this research provides valuable recommendations for the appropriate application of DoE and RSM in mineral processing.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.