Modeling root effects on soil detachment capacity using critical flow depth and unit energy of cross section in soils under Fraxinus excelsior L. species
{"title":"Modeling root effects on soil detachment capacity using critical flow depth and unit energy of cross section in soils under Fraxinus excelsior L. species","authors":"Misagh Parhizkar , Mohammad Reza Nasiri","doi":"10.1016/j.rhisph.2024.100990","DOIUrl":null,"url":null,"abstract":"<div><div>The flow depth is an important hydraulic parameter for calculating other hydraulic parameters of overland flow. There is notable changes in hydraulic parameter when the roots of a plant develop in the topsoil. A power regression equation between soil detachment capacity (D<sub>c</sub>) and unit energy of cross section (UEC) was established in soils under <em>Fraxinus excelsior</em> L. species based on the Froude number. For measuring D<sub>c</sub>, samples collected from soils under the studied species and subjected to five slopes (from 13.9 to 33.9%) and five water discharges (from 0.39 to 0.77 L m<sup>−1</sup> s<sup>−1</sup>) by a hydraulic flume. Compared with the soil with absence of root, the soil with presence of root had lower D<sub>c</sub>. The results showed a strong power relationship between the unit energy of cross section and D<sub>c</sub>, suggesting that soil detachment rate in rill erosion can be estimated using this hydraulic parameter (R<sup>2</sup> = 0.84). This finding is particularly relevant for hillslopes with slopes from 12% to 31%, where the proposed mathematical model could be applied to predict D<sub>c</sub>. Overall, this investigation supports a broader use of native species (such as the european ash <em>Fraxinus excelsior</em> L.), as a useful eco-engineering conservation practice and an alternative technique instead of utilizing artificial and expensive conservation practices.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100990"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001459","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The flow depth is an important hydraulic parameter for calculating other hydraulic parameters of overland flow. There is notable changes in hydraulic parameter when the roots of a plant develop in the topsoil. A power regression equation between soil detachment capacity (Dc) and unit energy of cross section (UEC) was established in soils under Fraxinus excelsior L. species based on the Froude number. For measuring Dc, samples collected from soils under the studied species and subjected to five slopes (from 13.9 to 33.9%) and five water discharges (from 0.39 to 0.77 L m−1 s−1) by a hydraulic flume. Compared with the soil with absence of root, the soil with presence of root had lower Dc. The results showed a strong power relationship between the unit energy of cross section and Dc, suggesting that soil detachment rate in rill erosion can be estimated using this hydraulic parameter (R2 = 0.84). This finding is particularly relevant for hillslopes with slopes from 12% to 31%, where the proposed mathematical model could be applied to predict Dc. Overall, this investigation supports a broader use of native species (such as the european ash Fraxinus excelsior L.), as a useful eco-engineering conservation practice and an alternative technique instead of utilizing artificial and expensive conservation practices.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.