Quantitative property of MF-discrepancy and efficient point-selection strategy for the nonlinear stochastic response analysis of structures with random parameters
{"title":"Quantitative property of MF-discrepancy and efficient point-selection strategy for the nonlinear stochastic response analysis of structures with random parameters","authors":"Jian-Bing Chen , Xin Huang , Jie Li","doi":"10.1016/j.probengmech.2024.103708","DOIUrl":null,"url":null,"abstract":"<div><div>The response analysis of high-dimensional and strongly nonlinear systems with random parameters remains a significant challenge in stochastic computational mechanics. To address this challenge, some methods based on the high-efficacy point sets have been developed, in which efficient global-point-set methods represented by low-discrepancy are of paramount importance in generating representative point sets. Several discrepancies including the extended F-discrepancy (EF-discrepancy) and the generalized F-discrepancy (GF-discrepancy) have been introduced to assess the uniformity and the efficacy of a representative point set. In such context, a maximal marginal EF-discrepancy (MF-discrepancy), which is an extended form of the GF-discrepancy, is proposed in this paper and then the properties of the MF-discrepancy are studied in detail. The probability distribution of the MF-discrepancy is derived, including a rigorous proof for random point sets and a model based on an assumption for some generic point sets. A generalized Koksma-Hlawka inequality is established accordingly to govern the worst error estimate. The lowest bound of the MF-discrepancy is given, and two intuitive quantitative indices are proposed to measure the goodness of the MF-discrepancy. Based on the lowest bound, an enhanced point-selection strategy with a unified theoretical framework for minimizing the MF-discrepancy is proposed. In this framework, locally minimizing the MF-discrepancy yields the two-step point-selection method, and a new point-selection strategy is proposed based on the global minimization of the MF-discrepancy, which is verified to be efficient and robust, especially in high-dimensional cases. Several numerical examples, including a 2-story shear frame, a 10-story shear frame, and a 10-story reinforced concrete frame structure modeled by the finite element method, are studied, verifying the efficiency and the robustness of the proposed point-selection strategy.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"78 ","pages":"Article 103708"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001309","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The response analysis of high-dimensional and strongly nonlinear systems with random parameters remains a significant challenge in stochastic computational mechanics. To address this challenge, some methods based on the high-efficacy point sets have been developed, in which efficient global-point-set methods represented by low-discrepancy are of paramount importance in generating representative point sets. Several discrepancies including the extended F-discrepancy (EF-discrepancy) and the generalized F-discrepancy (GF-discrepancy) have been introduced to assess the uniformity and the efficacy of a representative point set. In such context, a maximal marginal EF-discrepancy (MF-discrepancy), which is an extended form of the GF-discrepancy, is proposed in this paper and then the properties of the MF-discrepancy are studied in detail. The probability distribution of the MF-discrepancy is derived, including a rigorous proof for random point sets and a model based on an assumption for some generic point sets. A generalized Koksma-Hlawka inequality is established accordingly to govern the worst error estimate. The lowest bound of the MF-discrepancy is given, and two intuitive quantitative indices are proposed to measure the goodness of the MF-discrepancy. Based on the lowest bound, an enhanced point-selection strategy with a unified theoretical framework for minimizing the MF-discrepancy is proposed. In this framework, locally minimizing the MF-discrepancy yields the two-step point-selection method, and a new point-selection strategy is proposed based on the global minimization of the MF-discrepancy, which is verified to be efficient and robust, especially in high-dimensional cases. Several numerical examples, including a 2-story shear frame, a 10-story shear frame, and a 10-story reinforced concrete frame structure modeled by the finite element method, are studied, verifying the efficiency and the robustness of the proposed point-selection strategy.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.