Rong Wu , Zijun Wang , Chenfeng Cui , Yongxiang Li , Miao Tang , Jiangdong Chu , Renjie Xv , Chenrui Zhu , Shuo Wang , Yuli Li , Chengyuan Zhang , Zhannan Huang
{"title":"Applicability analysis of comprehensive drought index based on GRACE data in ten major river basins in China","authors":"Rong Wu , Zijun Wang , Chenfeng Cui , Yongxiang Li , Miao Tang , Jiangdong Chu , Renjie Xv , Chenrui Zhu , Shuo Wang , Yuli Li , Chengyuan Zhang , Zhannan Huang","doi":"10.1016/j.jhydrol.2024.132275","DOIUrl":null,"url":null,"abstract":"<div><div>As hydroclimatic extremes, drought triggered by climate change and human activities are recurrent over China. Selecting an appropriate comprehensive drought index is an important measure to comprehensively monitor drought characteristics. Precipitation and Terrestrial Water Storage Anomalies (TWSA) are important variables for assessing drought triggered by water deficiency in the atmosphere and terrestrial systems. The study aims to compare and discuss the applicability of drought index based solely on TWSA (DSI) and based on the combined effects of precipitation and TWSA (CCDI) in monitoring comprehensive drought in China. The results reveal that precipitation anomalies do not align with TWSA in arid basins, while they are synchronized in humid basins. CCDI reveals more favorable spatiotemporal agreement with the traditional drought indices, whereas DSI shows more consistency with common drought indices in humid basins. CCDI and DSI are suitable for assessing comprehensive drought in arid and humid basins, respectively. Moreover, almost both DSI and CCDI successfully monitored major drought periods in humid and arid basins during 2002–2006 and 2013–2017, respectively. Overall, this study highlights the applicability of CCDI and DSI in comprehensive drought assessment in arid and humid basins, respectively, providing valuable support for optimizing water resources utilization, management, and drought resistance decision-making.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132275"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016718","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
As hydroclimatic extremes, drought triggered by climate change and human activities are recurrent over China. Selecting an appropriate comprehensive drought index is an important measure to comprehensively monitor drought characteristics. Precipitation and Terrestrial Water Storage Anomalies (TWSA) are important variables for assessing drought triggered by water deficiency in the atmosphere and terrestrial systems. The study aims to compare and discuss the applicability of drought index based solely on TWSA (DSI) and based on the combined effects of precipitation and TWSA (CCDI) in monitoring comprehensive drought in China. The results reveal that precipitation anomalies do not align with TWSA in arid basins, while they are synchronized in humid basins. CCDI reveals more favorable spatiotemporal agreement with the traditional drought indices, whereas DSI shows more consistency with common drought indices in humid basins. CCDI and DSI are suitable for assessing comprehensive drought in arid and humid basins, respectively. Moreover, almost both DSI and CCDI successfully monitored major drought periods in humid and arid basins during 2002–2006 and 2013–2017, respectively. Overall, this study highlights the applicability of CCDI and DSI in comprehensive drought assessment in arid and humid basins, respectively, providing valuable support for optimizing water resources utilization, management, and drought resistance decision-making.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.