Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Ria Aniza , Wei-Hsin Chen , Christian J.A. Herrera , Rafael Quirino , Mathieu Petrissans , Anelie Petrissans
{"title":"Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes","authors":"Ria Aniza ,&nbsp;Wei-Hsin Chen ,&nbsp;Christian J.A. Herrera ,&nbsp;Rafael Quirino ,&nbsp;Mathieu Petrissans ,&nbsp;Anelie Petrissans","doi":"10.1016/j.renene.2024.121885","DOIUrl":null,"url":null,"abstract":"<div><div>Novel biomass bioenergy-bioexergy analyses via thermogravimetry analysis and artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the highest bioenergy (higher heating value – HHV: 18.84 MJ kg<sup>−1</sup>) and bioexergy (specific chemical bioexergy – SCB: 19.65 MJ kg<sup>−1</sup>) with the SCB/HHV ratio of wood waste as about 1.043–1.046. The high C-element has a significant influence on the HHV-SCB. The three distinct zones of wood waste combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction – degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin) at Zone II, 110–600 °C, and ash remains (Zone III, 600–800 °C). The ignition (<em>D</em><sub><em>ig</em></sub> = 0.01–0.04) and fuel reactivity (<em>R</em><sub><em>fuel</em></sub> = 3.82–6.97 %·min<sup>−1</sup>·°C<sup>−1</sup>) indexes are evaluated. The comprehensive combustion index (<em>S</em><sub><em>n:</em></sub>&gt;5 × 10<sup>−7</sup>%<sup>2</sup> min<sup>−2</sup> °C<sup>−3</sup>) suggests that wood waste has a better combustion performance than bituminous coal. The statistical evaluation presents that the highest HHV-SCB values are obtained by performing combustion for SW-250 μm at 15 °C·min<sup>−1</sup>. The S/N ratio and ANOVA results agree that the wood waste type and particle size denote the most influential parameters. The artificial neural network prediction shows an excellent result (R<sup>2</sup> = 1) with 1 hidden layer and 5 neuron configurations.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121885"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019530","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Novel biomass bioenergy-bioexergy analyses via thermogravimetry analysis and artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the highest bioenergy (higher heating value – HHV: 18.84 MJ kg−1) and bioexergy (specific chemical bioexergy – SCB: 19.65 MJ kg−1) with the SCB/HHV ratio of wood waste as about 1.043–1.046. The high C-element has a significant influence on the HHV-SCB. The three distinct zones of wood waste combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction – degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin) at Zone II, 110–600 °C, and ash remains (Zone III, 600–800 °C). The ignition (Dig = 0.01–0.04) and fuel reactivity (Rfuel = 3.82–6.97 %·min−1·°C−1) indexes are evaluated. The comprehensive combustion index (Sn:>5 × 10−7%2 min−2 °C−3) suggests that wood waste has a better combustion performance than bituminous coal. The statistical evaluation presents that the highest HHV-SCB values are obtained by performing combustion for SW-250 μm at 15 °C·min−1. The S/N ratio and ANOVA results agree that the wood waste type and particle size denote the most influential parameters. The artificial neural network prediction shows an excellent result (R2 = 1) with 1 hidden layer and 5 neuron configurations.

Abstract Image

应用人工智能对燃烧回收硬木和软木废料进行生物能源和生物能量分析
通过热重分析和人工智能进行的新型生物质生物能量-生物能分析,用于评估来自木材废料的三种生物燃料(软木-SW、硬木-HW 和木材混合燃料-WB)。软木-SW 的化学特征具有最高的生物能量(较高的热值 - HHV:18.84 MJ kg-1)和生物能(特定化学生物能 - SCB:19.65 MJ kg-1),木材废料的 SCB/HHV 比值约为 1.043-1.046。高 C 元素对 HHV-SCB 有显著影响。木质废料燃烧分为三个不同的区域:水分蒸发区(I 区,最高 110 °C)、燃烧反应--三种主要木质纤维素成分(半纤维素、纤维素和木质素)降解区(II 区,110-600 °C)和灰烬残留区(III 区,600-800 °C)。评估了点火(Dig = 0.01-0.04)和燃料反应性(Rfuel = 3.82-6.97 %-min-1-℃-1)指数。综合燃烧指数(Sn:>5 × 10-7%2 min-2 ℃-3)表明,木材废料的燃烧性能优于烟煤。统计评估表明,在 15 °C-min-1 下燃烧 SW-250 μm 的 HHV-SCB 值最高。信噪比和方差分析结果表明,木质废料类型和粒度是影响最大的参数。人工神经网络预测结果显示,采用 1 个隐藏层和 5 个神经元配置的结果非常好(R2 = 1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信