Quantitative evaluation of leakage flow rate in the sealing part using graphite gland packing to mount a hydrogen separation membrane tube for HI decomposition membrane reaction

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Chihiro Sugimoto , Odtsetseg Myagmarjav , Nobuyuki Tanaka , Hiroki Noguchi , Hiroaki Takegami , Shinji Kubo
{"title":"Quantitative evaluation of leakage flow rate in the sealing part using graphite gland packing to mount a hydrogen separation membrane tube for HI decomposition membrane reaction","authors":"Chihiro Sugimoto ,&nbsp;Odtsetseg Myagmarjav ,&nbsp;Nobuyuki Tanaka ,&nbsp;Hiroki Noguchi ,&nbsp;Hiroaki Takegami ,&nbsp;Shinji Kubo","doi":"10.1016/j.ijhydene.2024.10.334","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal efficiency of hydrogen production in the thermochemical iodine-sulfur (or sulfur-iodine) can be effectively enhanced using a membrane reactor for the HI decomposition reaction (about 500 °C) for hydrogen production. The attachment of ceramic tubes, made of brittle materials, for hydrogen separation membranes to a tube plate via sealing parts is a critical aspect of this process. A quantitative procedure was specified to make an expanded graphite grand packing exhibit sealing performance. The applicability of the method was tested during 50 thermal cycles ranging between 25°C-450 °C and gas pressure of 0.3–0.9 MPa. The leakage flow rate using a dummy membrane tube and helium gas (a tracer gas) was approximately 2 × 10<sup>−5</sup> Pa m<sup>3</sup> s<sup>−1</sup>. This value is comparable to the detection limit of the standard bubble leak test, indicating the effectiveness of this sealing procedure. Furthermore, the leakage flow rate was proportional to the differential pressure applied to the sealing part, suggesting a molecular flow type. This allows for estimating the leakage flow rate by introducing the conductance of flow paths, formulated based on the molecular kinetic theory of gases. An estimation method of the leakage flow rate at any packing size and any pressure difference is proposed, which can help design future practical membrane reactors.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"95 ","pages":"Pages 98-107"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924045403","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal efficiency of hydrogen production in the thermochemical iodine-sulfur (or sulfur-iodine) can be effectively enhanced using a membrane reactor for the HI decomposition reaction (about 500 °C) for hydrogen production. The attachment of ceramic tubes, made of brittle materials, for hydrogen separation membranes to a tube plate via sealing parts is a critical aspect of this process. A quantitative procedure was specified to make an expanded graphite grand packing exhibit sealing performance. The applicability of the method was tested during 50 thermal cycles ranging between 25°C-450 °C and gas pressure of 0.3–0.9 MPa. The leakage flow rate using a dummy membrane tube and helium gas (a tracer gas) was approximately 2 × 10−5 Pa m3 s−1. This value is comparable to the detection limit of the standard bubble leak test, indicating the effectiveness of this sealing procedure. Furthermore, the leakage flow rate was proportional to the differential pressure applied to the sealing part, suggesting a molecular flow type. This allows for estimating the leakage flow rate by introducing the conductance of flow paths, formulated based on the molecular kinetic theory of gases. An estimation method of the leakage flow rate at any packing size and any pressure difference is proposed, which can help design future practical membrane reactors.
使用石墨压盖填料安装氢气分离膜管以进行 HI 分解膜反应的密封部分泄漏流量定量评估
利用膜反应器进行 HI 分解反应(约 500 ℃)制氢,可有效提高热化学碘硫(或硫碘)制氢的热效率。氢气分离膜用脆性材料制成的陶瓷管通过密封部件固定在管板上是这一过程的关键环节。为使膨胀石墨大填料表现出密封性能,指定了一个定量程序。在 25°C-450°C 和 0.3-0.9 兆帕的气体压力下进行了 50 次热循环,测试了该方法的适用性。使用假膜管和氦气(示踪气体)测得的泄漏流量约为 2 × 10-5 Pa m3 s-1。这一数值与标准气泡泄漏测试的检测极限相当,表明了这一密封程序的有效性。此外,泄漏流量与施加在密封部件上的压差成正比,表明这是一种分子流动类型。这样就可以通过引入基于气体分子动力学理论制定的流动路径电导来估算泄漏流量。本文提出了一种在任何填料尺寸和任何压力差条件下的泄漏流速估算方法,有助于设计未来的实用膜反应器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信