Effects of increasing rainfall on organic carbon release and transport processes in permafrost on the central Tibetan Plateau

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Haotian Wei , Enlong Liu , Chuan He , Bingtang Song , Dan Wang , Jian Kang , Ling Chen , Qiong Li
{"title":"Effects of increasing rainfall on organic carbon release and transport processes in permafrost on the central Tibetan Plateau","authors":"Haotian Wei ,&nbsp;Enlong Liu ,&nbsp;Chuan He ,&nbsp;Bingtang Song ,&nbsp;Dan Wang ,&nbsp;Jian Kang ,&nbsp;Ling Chen ,&nbsp;Qiong Li","doi":"10.1016/j.catena.2024.108553","DOIUrl":null,"url":null,"abstract":"<div><div>Rainfall can alter the hydrothermal state of permafrost, subsequently affecting organic carbon decomposition and CO<sub>2</sub> transport. However, the mechanisms by which rainfall influences organic carbon decomposition and carbon dioxide transport processes in permafrost remain unclear. In this study, a coupled permafrost water-heat-vapor-carbon model, based on the surface energy-water balance theory, is employed to explore the effects of increased precipitation on permafrost moisture, temperature, organic carbon decomposition, and carbon dioxide transport through numerical simulations. The results are as follows: (1) with increased rainfall, surface latent heat flux rises while surface sensible heat flux declines, leading to a reduction in surface heat flux. The annual mean surface heat fluxes for the three precipitation conditions of no change in precipitation (ΔP = 0 mm), 50 mm increase in precipitation (ΔP = 50 mm) and 100 mm increase in precipitation (ΔP = 100 mm) are −0.1 W/m<sup>2</sup>, −0.2 W/m<sup>2</sup> and −0.4 W/m<sup>2</sup> respectively; and (2) as rainfall increases, soil moisture content increases significantly, but the impact of rainfall on soil moisture content diminishes with increasing soil depth; and (3) increased rainfall results in a decrease in soil carbon fluxes, soil organic matter decomposition rates, and CO<sub>2</sub> concentrations. Compared to the case of constant precipitation, the surface carbon fluxes decreased by 0.04 <span><math><mrow><mi>μ</mi><mtext>mol</mtext><mo>·</mo><msup><mrow><mtext>m</mtext></mrow><mtext>-2</mtext></msup><msup><mrow><mtext>s</mtext></mrow><mtext>-1</mtext></msup></mrow></math></span> and 0.08 <span><math><mrow><mi>μ</mi><mtext>mol</mtext><mo>·</mo><msup><mrow><mtext>m</mtext></mrow><mtext>-2</mtext></msup><msup><mrow><mtext>s</mtext></mrow><mtext>-1</mtext></msup></mrow></math></span> under ΔP = 50 mm and ΔP = 100 mm, respectively. Additionally, the decomposition rate of soil organic matter at 10 cm depth decreased by 3.2 E-8 <span><math><mrow><mtext>mol</mtext><mo>·</mo><msup><mrow><mtext>m</mtext></mrow><mtext>-2</mtext></msup><msup><mrow><mtext>s</mtext></mrow><mtext>-1</mtext></msup></mrow></math></span> and 6.3 E-8 <span><math><mrow><mtext>mol</mtext><mo>·</mo><msup><mrow><mtext>m</mtext></mrow><mtext>-2</mtext></msup><msup><mrow><mtext>s</mtext></mrow><mtext>-1</mtext></msup></mrow></math></span>, respectively, while the soil carbon concentration decreased by 3 <span><math><mrow><mi>μ</mi><mi>m</mi><mi>o</mi><mi>l</mi><mo>/</mo><mi>m</mi><mi>o</mi><mi>l</mi></mrow></math></span> and 5 <span><math><mrow><mi>μ</mi><mi>m</mi><mi>o</mi><mi>l</mi><mo>/</mo><mi>m</mi><mi>o</mi><mi>l</mi></mrow></math></span>, respectively.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108553"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007501","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall can alter the hydrothermal state of permafrost, subsequently affecting organic carbon decomposition and CO2 transport. However, the mechanisms by which rainfall influences organic carbon decomposition and carbon dioxide transport processes in permafrost remain unclear. In this study, a coupled permafrost water-heat-vapor-carbon model, based on the surface energy-water balance theory, is employed to explore the effects of increased precipitation on permafrost moisture, temperature, organic carbon decomposition, and carbon dioxide transport through numerical simulations. The results are as follows: (1) with increased rainfall, surface latent heat flux rises while surface sensible heat flux declines, leading to a reduction in surface heat flux. The annual mean surface heat fluxes for the three precipitation conditions of no change in precipitation (ΔP = 0 mm), 50 mm increase in precipitation (ΔP = 50 mm) and 100 mm increase in precipitation (ΔP = 100 mm) are −0.1 W/m2, −0.2 W/m2 and −0.4 W/m2 respectively; and (2) as rainfall increases, soil moisture content increases significantly, but the impact of rainfall on soil moisture content diminishes with increasing soil depth; and (3) increased rainfall results in a decrease in soil carbon fluxes, soil organic matter decomposition rates, and CO2 concentrations. Compared to the case of constant precipitation, the surface carbon fluxes decreased by 0.04 μmol·m-2s-1 and 0.08 μmol·m-2s-1 under ΔP = 50 mm and ΔP = 100 mm, respectively. Additionally, the decomposition rate of soil organic matter at 10 cm depth decreased by 3.2 E-8 mol·m-2s-1 and 6.3 E-8 mol·m-2s-1, respectively, while the soil carbon concentration decreased by 3 μmol/mol and 5 μmol/mol, respectively.
降雨增加对青藏高原中部永久冻土有机碳释放和迁移过程的影响
降雨可改变永久冻土的水热状态,进而影响有机碳分解和二氧化碳迁移。然而,降雨影响永久冻土中有机碳分解和二氧化碳迁移过程的机制仍不清楚。本研究采用基于地表能量-水分平衡理论的冻土水-热-气-碳耦合模型,通过数值模拟探讨了降水增加对冻土水分、温度、有机碳分解和二氧化碳输运的影响。结果如下(1)随着降雨量的增加,地表潜热通量上升,而地表显热通量下降,导致地表热通量减少。在降水量不变(ΔP = 0 毫米)、降水量增加 50 毫米(ΔP = 50 毫米)和降水量增加 100 毫米(ΔP = 100 毫米)的三种降水条件下,地表年平均热通量分别为-0.1 W/m2、-0.2 W/m2 和-0.4 W/m2 ;(2)随着降水量的增加,土壤含水量显著增加,但降水量对土壤含水量的影响随土壤深度的增加而减弱;(3)降水量的增加导致土壤碳通量、土壤有机质分解率和二氧化碳浓度的降低。与降水量不变的情况相比,在 ΔP = 50 mm 和 ΔP = 100 mm 条件下,地表碳通量分别减少了 0.04 μmol-m-2s-1 和 0.08 μmol-m-2s-1。此外,10 厘米深的土壤有机质分解率分别降低了 3.2 E-8 mol-m-2s-1 和 6.3 E-8 mol-m-2s-1,土壤碳浓度分别降低了 3 μmol/mol 和 5 μmol/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信