{"title":"Techno-economic analysis of hydrogen production from waste plastics and storage plant in the context of Japan","authors":"Bishwash Paneru , Biplov Paneru , Sanjog Chhetri Sapkota , Dhiraj Kumar Mandal , Prem Giri","doi":"10.1016/j.ijhydene.2024.11.134","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses Japan's pressing issue of plastic waste by proposing a conversion process to produce hydrogen from non-biodegradable plastics. Utilizing DWSIM software for plastic-to-hydrogen conversion and Aspen Plus for hydrogen compression, which can be stored in a Type IV cylinder, the analysis shows that a plant can generate 1,449,792 kg/year of hydrogen from various plastics, including PET, PVC, PE, PP, and PS. Operating at 600 °C and 1 bar, the facility processes 100 kg/h of plastic to yield 7.098 kg/h of hydrogen. The project's capital expenditure (CAPEX) is 143.5 million Japanese Yen, with an operational expenditure (OPEX) of 29.7 million JPY/year. The Levelized Cost of Hydrogen (LCOH) varies, with estimates of 8.874–19.82 USD/kg based on construction timelines, and sensitivity analysis and uncertainty analysis are performed to estimate the effect of various parameters on LCOH. This process holds potential for advancing sustainable development in Japan and globally, addressing both waste management and clean energy production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"95 ","pages":"Pages 53-70"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses Japan's pressing issue of plastic waste by proposing a conversion process to produce hydrogen from non-biodegradable plastics. Utilizing DWSIM software for plastic-to-hydrogen conversion and Aspen Plus for hydrogen compression, which can be stored in a Type IV cylinder, the analysis shows that a plant can generate 1,449,792 kg/year of hydrogen from various plastics, including PET, PVC, PE, PP, and PS. Operating at 600 °C and 1 bar, the facility processes 100 kg/h of plastic to yield 7.098 kg/h of hydrogen. The project's capital expenditure (CAPEX) is 143.5 million Japanese Yen, with an operational expenditure (OPEX) of 29.7 million JPY/year. The Levelized Cost of Hydrogen (LCOH) varies, with estimates of 8.874–19.82 USD/kg based on construction timelines, and sensitivity analysis and uncertainty analysis are performed to estimate the effect of various parameters on LCOH. This process holds potential for advancing sustainable development in Japan and globally, addressing both waste management and clean energy production.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.