Himani Bhatia, Sanjay R. Dhakate, Kiran M. Subhedar
{"title":"Enhanced SERS signal in the hybrid substrate through electronic modulation of CVD grown single-layer graphene","authors":"Himani Bhatia, Sanjay R. Dhakate, Kiran M. Subhedar","doi":"10.1016/j.diamond.2024.111734","DOIUrl":null,"url":null,"abstract":"<div><div>The ever-growing demand for sensitive and reliable detection of hazardous material in the food chain and trace detection of chemical entities in a variety of field attracted advanced Surface Enhanced Raman Spectroscopy (SERS) active materials such as graphene-based hybrid SERS. The graphene silver nanostructures (AgNS) based hybrid SERS substrates are explored to understand the critical role of pristine graphene grown by chemical vapor deposition (CVD) on SERS signal and its possible mechanism. A lithography-free fabrication process has been developed for growth of uniform array of AgNS with varying both particle sizes and inter-particle gaps. The optimal AgNS with average feature size ∼40 nm and average inter-particle spacing of ∼13 nm demonstrated the maximum SERS enhancement with rhodamine 6G (R6G). The single-layer graphene (SLG) grown by CVD with the aid of controlling the reaction geometry with growth under a free molecular regime leads to the highest quality graphene with I<sub>2D</sub>/I<sub>G</sub> ratio of ∼3.58 and I<sub>D</sub>/I<sub>G</sub> ratio of ∼0.154. The flow regime-controlled CVD-grown SLG integrated with AgNS and its SERS enhancement mechanism is explored for trace detection of R6G. The graphene with its ability to modulate the electronic structure and tune it relative to the highest occupied molecular orbital-lowest occupied molecular orbital (HOMO-LUMO) levels of R6G molecules resulted in improved SERS signal by about an order for graphene-AgNS hybrid structure as compared to bare AgNS. The obtained findings paved the way for the futuristic and reliable hybrid SERS substrate for trace-level detection of a wide range of chemical entities.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111734"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The ever-growing demand for sensitive and reliable detection of hazardous material in the food chain and trace detection of chemical entities in a variety of field attracted advanced Surface Enhanced Raman Spectroscopy (SERS) active materials such as graphene-based hybrid SERS. The graphene silver nanostructures (AgNS) based hybrid SERS substrates are explored to understand the critical role of pristine graphene grown by chemical vapor deposition (CVD) on SERS signal and its possible mechanism. A lithography-free fabrication process has been developed for growth of uniform array of AgNS with varying both particle sizes and inter-particle gaps. The optimal AgNS with average feature size ∼40 nm and average inter-particle spacing of ∼13 nm demonstrated the maximum SERS enhancement with rhodamine 6G (R6G). The single-layer graphene (SLG) grown by CVD with the aid of controlling the reaction geometry with growth under a free molecular regime leads to the highest quality graphene with I2D/IG ratio of ∼3.58 and ID/IG ratio of ∼0.154. The flow regime-controlled CVD-grown SLG integrated with AgNS and its SERS enhancement mechanism is explored for trace detection of R6G. The graphene with its ability to modulate the electronic structure and tune it relative to the highest occupied molecular orbital-lowest occupied molecular orbital (HOMO-LUMO) levels of R6G molecules resulted in improved SERS signal by about an order for graphene-AgNS hybrid structure as compared to bare AgNS. The obtained findings paved the way for the futuristic and reliable hybrid SERS substrate for trace-level detection of a wide range of chemical entities.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.