{"title":"Two types of stimulated emission in HPHT diamond with a high concentration of NV centers","authors":"V.F. Lebedev , E.A. Vasilev , I.V. Klepikov , T.S. Misnikova , Ya.A. Ryvkina , A.V. Koliadin , V.G. Vins","doi":"10.1016/j.diamond.2024.111763","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents the results of experimental observation of two types of stimulated emission (SE) under pulsed laser pumping at 532 nm in diamond with NV centers. A comprehensive spectroscopic characterization of multisectorial HPHT diamond plate was performed. At low pumping power, the stimulated emission from NV¯ centers was recorded as a broad (≥80 nm wide) band with a maximum at 706 nm in the {111} and {311} sectors of the diamond plate. As the pump power increased in the {111} sector, narrow-band stimulated emission (<10 nm wide) was detected, with a maximum at 716 nm and a luminescence impulse duration of 1.5–3 ns. As the pump density increased, a fine structure in the spectrum of narrow-band stimulated emission was revealed for the first time. The concentration of NV¯ centers in the {111} and {311} growth sectors was ≈10 ppm. However, there were considerable differences in the concentrations of C (35 and 3.5 ppm) and C<sup>+</sup> centers (6.1 and 3.2 ppm, respectively). It was demonstrated that the presence of a high concentration of NV¯ centers is not the only necessary condition for the initiation of narrow-band SE in the 710–720 nm range. In the {311} sector, lighting at 360, 405, and 488 nm reduced the concentration of NV¯ centers by 15 % while increasing the concentration of C<sup>+</sup> centers in the {311} sector. This effect is weak in the {111} sector. The authors suggested a model for narrow-band SE at the transition Valence Band → C<sup>+</sup> with charge-state conversion of C↔C<sup>+</sup> and NV<sup>0</sup>↔NV¯ centers. Further research on the dynamic processes is required in order to a detailed understanding of the operation of NV centers in diamond during SE generation.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111763"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009762","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents the results of experimental observation of two types of stimulated emission (SE) under pulsed laser pumping at 532 nm in diamond with NV centers. A comprehensive spectroscopic characterization of multisectorial HPHT diamond plate was performed. At low pumping power, the stimulated emission from NV¯ centers was recorded as a broad (≥80 nm wide) band with a maximum at 706 nm in the {111} and {311} sectors of the diamond plate. As the pump power increased in the {111} sector, narrow-band stimulated emission (<10 nm wide) was detected, with a maximum at 716 nm and a luminescence impulse duration of 1.5–3 ns. As the pump density increased, a fine structure in the spectrum of narrow-band stimulated emission was revealed for the first time. The concentration of NV¯ centers in the {111} and {311} growth sectors was ≈10 ppm. However, there were considerable differences in the concentrations of C (35 and 3.5 ppm) and C+ centers (6.1 and 3.2 ppm, respectively). It was demonstrated that the presence of a high concentration of NV¯ centers is not the only necessary condition for the initiation of narrow-band SE in the 710–720 nm range. In the {311} sector, lighting at 360, 405, and 488 nm reduced the concentration of NV¯ centers by 15 % while increasing the concentration of C+ centers in the {311} sector. This effect is weak in the {111} sector. The authors suggested a model for narrow-band SE at the transition Valence Band → C+ with charge-state conversion of C↔C+ and NV0↔NV¯ centers. Further research on the dynamic processes is required in order to a detailed understanding of the operation of NV centers in diamond during SE generation.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.