{"title":"Improve wear resistance of C/C composites as artificial bone using diamond-like carbon coatings","authors":"Xiang Zhang, Ling Wang, Jiahao Liang, Zhixia Cai, Chengfeng Wu, Zhoujian Tan, Jiqiao Liao","doi":"10.1016/j.diamond.2024.111761","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, diamond-like carbon (DLC) coatings and silicon-doped diamond-like (Si-DLC) coatings were prepared on the surface of C/C composites by a combination of plasma-enhanced chemical vapor deposition (PECVD) and magnetron sputtering processes. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and Raman spectroscopy. The mechanical properties and friction behavior related to the Si element were investigated using nanoindentation and HT-1000 high temperature friction and wear tester. The biocompatibility of the materials was also evaluated by the MG-63 proliferation test. The results indicate that Si elements were successfully incorporated into the DLC films, bonding with C and O atoms, which altered the thermal stability and microstructure of the coatings, reduced the internal stress of the films, and increased disorder. Compared to C/C composites, all coated layers exhibited lower coefficients of friction, with the formation of transfer layers and graphitization induced by friction contributing to the excellent tribological performance. Both coatings showed no cytotoxicity and demonstrated good biocompatibility. Both coatings are effective in reducing wear and chip losses in C/C composites when used as artificial bones. This work suggests that diamond-like carbon coated C/C composites can be excellent structural materials for human body in biomedical science.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111761"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, diamond-like carbon (DLC) coatings and silicon-doped diamond-like (Si-DLC) coatings were prepared on the surface of C/C composites by a combination of plasma-enhanced chemical vapor deposition (PECVD) and magnetron sputtering processes. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and Raman spectroscopy. The mechanical properties and friction behavior related to the Si element were investigated using nanoindentation and HT-1000 high temperature friction and wear tester. The biocompatibility of the materials was also evaluated by the MG-63 proliferation test. The results indicate that Si elements were successfully incorporated into the DLC films, bonding with C and O atoms, which altered the thermal stability and microstructure of the coatings, reduced the internal stress of the films, and increased disorder. Compared to C/C composites, all coated layers exhibited lower coefficients of friction, with the formation of transfer layers and graphitization induced by friction contributing to the excellent tribological performance. Both coatings showed no cytotoxicity and demonstrated good biocompatibility. Both coatings are effective in reducing wear and chip losses in C/C composites when used as artificial bones. This work suggests that diamond-like carbon coated C/C composites can be excellent structural materials for human body in biomedical science.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.