Chuancong Wan , Chaoyue Shi , Shaolong Zhu , Song Fang , Limin Qiu , Guoyou Shi , Dingfu Li , Shouqiang Shao , Kai Wang
{"title":"Comprehensive design and preliminary experiments of liquid hydrogen storage tank for trucks","authors":"Chuancong Wan , Chaoyue Shi , Shaolong Zhu , Song Fang , Limin Qiu , Guoyou Shi , Dingfu Li , Shouqiang Shao , Kai Wang","doi":"10.1016/j.ijrefrig.2024.10.037","DOIUrl":null,"url":null,"abstract":"<div><div>As the global demand for lower carbon emissions intensifies, the deployment of medium and small-scale liquid hydrogen (LH2) storage tanks in heavy-duty trucking and aviation is expected to increase. However, heat leakage into these cryogenic vessels leads to a continuous increase in tank pressure, potentially resulting in sudden hydrogen release and other safety concerns. While horizontal LH2 tanks demonstrate greater suitability in the transportation sector compared to vertical tanks, investigations in this domain remain scarce. Research on horizontal tanks is crucial for safe and efficient storage. Understanding these dynamics is essential for predicting temperature and pressure changes during self-pressurization, ensuring safe liquid hydrogen storage. This study designed and built a 500-liter horizontal liquid hydrogen tank for vehicle fuel storage, following ISO 13985 standards to ensure practical applicability. The project encompassed material selection, structural design, and both stress and thermodynamic analyses. Preliminary experiments were conducted using liquid nitrogen as a substitute for liquid hydrogen. Experiments assessed tank heat leakage, vapor-cooled shield insulation performance, thermal stratification, lossless storage time, and pressure changes during self-pressurization and steady-state evaporation. Results validate the efficiency of our pressure vessel design method for complex conditions, enhancing understanding of self-pressurization and thermal stratification in horizontal tanks. The vapor-cooled shield reduced heat leakage into the tank by 22.7%, decreasing the daily evaporation rate under liquid nitrogen conditions from 1.87 wt% to 1.5 wt%. and maintaining an initial liquid level of 50% extended the lossless storage time to 50 h in the LN2 scenario. These findings offer valuable insights for assessing the performance of subsequent liquid hydrogen experiments.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 279-293"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003785","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the global demand for lower carbon emissions intensifies, the deployment of medium and small-scale liquid hydrogen (LH2) storage tanks in heavy-duty trucking and aviation is expected to increase. However, heat leakage into these cryogenic vessels leads to a continuous increase in tank pressure, potentially resulting in sudden hydrogen release and other safety concerns. While horizontal LH2 tanks demonstrate greater suitability in the transportation sector compared to vertical tanks, investigations in this domain remain scarce. Research on horizontal tanks is crucial for safe and efficient storage. Understanding these dynamics is essential for predicting temperature and pressure changes during self-pressurization, ensuring safe liquid hydrogen storage. This study designed and built a 500-liter horizontal liquid hydrogen tank for vehicle fuel storage, following ISO 13985 standards to ensure practical applicability. The project encompassed material selection, structural design, and both stress and thermodynamic analyses. Preliminary experiments were conducted using liquid nitrogen as a substitute for liquid hydrogen. Experiments assessed tank heat leakage, vapor-cooled shield insulation performance, thermal stratification, lossless storage time, and pressure changes during self-pressurization and steady-state evaporation. Results validate the efficiency of our pressure vessel design method for complex conditions, enhancing understanding of self-pressurization and thermal stratification in horizontal tanks. The vapor-cooled shield reduced heat leakage into the tank by 22.7%, decreasing the daily evaporation rate under liquid nitrogen conditions from 1.87 wt% to 1.5 wt%. and maintaining an initial liquid level of 50% extended the lossless storage time to 50 h in the LN2 scenario. These findings offer valuable insights for assessing the performance of subsequent liquid hydrogen experiments.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.