Kang Li , Chunyu Li , Soheil Mohtaram , Ni Liu , Hua Zhang , Binlin Dou , Chao Li , Qize He , Mohd Abul Hasan , Saiful Islam , Jingwu Wang , Zilong Wang , Jianhong Chen , Yashar Aryanfar
{"title":"Experimental and numerical study on scroll compressor under different profile correction and discharge ports shapes","authors":"Kang Li , Chunyu Li , Soheil Mohtaram , Ni Liu , Hua Zhang , Binlin Dou , Chao Li , Qize He , Mohd Abul Hasan , Saiful Islam , Jingwu Wang , Zilong Wang , Jianhong Chen , Yashar Aryanfar","doi":"10.1016/j.ijrefrig.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>The scroll compressor is an essential component in air conditioning and heat pump systems. This study examined an electric scroll compressor using R22 refrigerant, focusing on how modifications in the scroll head profile and discharge structure affect its performance. Initially, a semi-empirical model based on mathematical formulas was developed to predict the performance improvements of the updated scroll compressor. Three-dimensional simulation software was then used to illustrate changes in the internal flow dynamics before and after enhancements. The predictions were validated through experimental testing. Both the semi-empirical model and the three-dimensional unsteady numerical calculation model analyzed the effects of modifications to the tooth head profile and discharge port shape on compressor performance. The adoption of a PMP profile correction delayed the compressor discharge process, shifting the starting discharge angle from 315°to 344°, thereby reducing under-compression occurrences during operation and increasing volumetric efficiency by 1.31%. Additionally, mathematical formulas correlating temperature with compressor performance were developed from fitting data, predicting compressor behavior under various conditions. Moreover, replacing a circular discharge port with a waist-shaped port reduced power consumption by 0.59 kW, resulting in a more uniform temperature distribution and enhanced mass flow rate during compressor operation.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 241-253"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The scroll compressor is an essential component in air conditioning and heat pump systems. This study examined an electric scroll compressor using R22 refrigerant, focusing on how modifications in the scroll head profile and discharge structure affect its performance. Initially, a semi-empirical model based on mathematical formulas was developed to predict the performance improvements of the updated scroll compressor. Three-dimensional simulation software was then used to illustrate changes in the internal flow dynamics before and after enhancements. The predictions were validated through experimental testing. Both the semi-empirical model and the three-dimensional unsteady numerical calculation model analyzed the effects of modifications to the tooth head profile and discharge port shape on compressor performance. The adoption of a PMP profile correction delayed the compressor discharge process, shifting the starting discharge angle from 315°to 344°, thereby reducing under-compression occurrences during operation and increasing volumetric efficiency by 1.31%. Additionally, mathematical formulas correlating temperature with compressor performance were developed from fitting data, predicting compressor behavior under various conditions. Moreover, replacing a circular discharge port with a waist-shaped port reduced power consumption by 0.59 kW, resulting in a more uniform temperature distribution and enhanced mass flow rate during compressor operation.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.