Development of engineered Zn-MOF/g-C3N4 based photoelectrochemical system for real-time sensors and removal of naproxen in wastewater

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Abera D. Ambaye , Sithembela A. Zikalala , Karabo C. Mashiloane , Jemal F. Nure , Mesfin A. Kebede , Touhami Mokrani , Edward N. Nxumalo
{"title":"Development of engineered Zn-MOF/g-C3N4 based photoelectrochemical system for real-time sensors and removal of naproxen in wastewater","authors":"Abera D. Ambaye ,&nbsp;Sithembela A. Zikalala ,&nbsp;Karabo C. Mashiloane ,&nbsp;Jemal F. Nure ,&nbsp;Mesfin A. Kebede ,&nbsp;Touhami Mokrani ,&nbsp;Edward N. Nxumalo","doi":"10.1016/j.talo.2024.100371","DOIUrl":null,"url":null,"abstract":"<div><div>Naproxen-contaminated water may lead to the accumulation of the drug in aquatic organisms and can pose high risks to an aquatic environment and human beings. Therefore, this work aimed to develop photoelectrochemical sensing and degradation of naproxen (NPX) using zinc-metal organic framework /graphitic carbon nitride thin film-based fluorine-doped tin oxide (Zn-MOF/g-C<sub>3</sub>N<sub>4</sub>/FTO) as anode material for the sensing and degradation of naproxen (NPX). The surface morphology, structure, surface property, surface area, optical property, photocurrent, and charge transfer kinetics abilities were studied using different techniques. The nanocomposites showed a superior photocurrent response (0.815 mA cm<sup>-2</sup>) compared to the original g-C<sub>3</sub>N<sub>4</sub> (0.328 mA cm<sup>-2</sup>). The photo-anode made of Zn-MOF@g-C<sub>3</sub>N<sub>4</sub>/FTO displayed the highest photocurrent value, indicating that the alignment of the two semiconductor bands prevented the quick recombination of electron-hole pairs. Owing to these attractive features, the Zn-MOF/g-C<sub>3</sub>N<sub>4</sub>/FTO electrode was applied for photoelectrochemical detection of NPX using chronoamperometry. Interestingly, the nanocomposites-based FTO ascribed a lower detection limit (2.3 ng <span>l</span><sup>-1</sup>) with a wide linear range concentration of NPX (0.5 to 200 µg <span>l</span><sup>-1</sup>). Additionally, the analytical assessment of repeatability and reproducibility demonstrated robust performance, with commendable relative standard deviations (RSD%) of 2.54 % and 2.40 %, respectively. On the other hand, a remarkable degradation efficiency of 97.52 % was attained when employing a bias potential of 0.1 V during a 2 h photoelectrocatalytic oxidation of NPX. The degradation process was primarily driven by the active participation of holes and hydroxyl radicals in ring opening and subsequent cleavage of by-products. The notable effectiveness of this degradation can be attributed to the combined and synergistic effects of both electrochemical and photocatalytic degradation techniques. The current state demonstrates its effectiveness in the photoelectrochemical sensing and removal of NPX using MOF/g-C<sub>3</sub>N<sub>4</sub> nanocomposites-based electrode materials in wastewater.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100371"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Naproxen-contaminated water may lead to the accumulation of the drug in aquatic organisms and can pose high risks to an aquatic environment and human beings. Therefore, this work aimed to develop photoelectrochemical sensing and degradation of naproxen (NPX) using zinc-metal organic framework /graphitic carbon nitride thin film-based fluorine-doped tin oxide (Zn-MOF/g-C3N4/FTO) as anode material for the sensing and degradation of naproxen (NPX). The surface morphology, structure, surface property, surface area, optical property, photocurrent, and charge transfer kinetics abilities were studied using different techniques. The nanocomposites showed a superior photocurrent response (0.815 mA cm-2) compared to the original g-C3N4 (0.328 mA cm-2). The photo-anode made of Zn-MOF@g-C3N4/FTO displayed the highest photocurrent value, indicating that the alignment of the two semiconductor bands prevented the quick recombination of electron-hole pairs. Owing to these attractive features, the Zn-MOF/g-C3N4/FTO electrode was applied for photoelectrochemical detection of NPX using chronoamperometry. Interestingly, the nanocomposites-based FTO ascribed a lower detection limit (2.3 ng l-1) with a wide linear range concentration of NPX (0.5 to 200 µg l-1). Additionally, the analytical assessment of repeatability and reproducibility demonstrated robust performance, with commendable relative standard deviations (RSD%) of 2.54 % and 2.40 %, respectively. On the other hand, a remarkable degradation efficiency of 97.52 % was attained when employing a bias potential of 0.1 V during a 2 h photoelectrocatalytic oxidation of NPX. The degradation process was primarily driven by the active participation of holes and hydroxyl radicals in ring opening and subsequent cleavage of by-products. The notable effectiveness of this degradation can be attributed to the combined and synergistic effects of both electrochemical and photocatalytic degradation techniques. The current state demonstrates its effectiveness in the photoelectrochemical sensing and removal of NPX using MOF/g-C3N4 nanocomposites-based electrode materials in wastewater.
开发基于 Zn-MOF/g-C3N4 的工程光电化学系统,用于实时传感器和去除废水中的萘普生
萘普生污染的水可能会导致该药物在水生生物体内蓄积,并对水生环境和人类构成高风险。因此,本研究旨在利用锌-金属有机框架/石墨化氮化碳薄膜基掺氟氧化锡(Zn-MOF/g-C3N4/FTO)作为阳极材料,开发萘普生(NPX)的光电化学传感和降解技术。采用不同的技术对纳米复合材料的表面形貌、结构、表面性质、表面积、光学性质、光电流和电荷转移动力学能力进行了研究。纳米复合材料的光电流响应(0.815 mA cm-2)优于原始 g-C3N4(0.328 mA cm-2)。由 Zn-MOF@g-C3N4/FTO 制成的光阳极显示出最高的光电流值,这表明两个半导体带的排列防止了电子-空穴对的快速重组。由于这些诱人的特性,Zn-MOF/g-C3N4/FTO 电极被应用于使用时标法进行 NPX 的光电化学检测。有趣的是,基于纳米复合材料的 FTO 具有较低的检测限(2.3 纳克/升),NPX 的线性范围较宽(0.5 至 200 微克/升)。此外,对可重复性和再现性的分析评估也显示出了良好的性能,相对标准偏差(RSD%)分别为 2.54 % 和 2.40 %,值得称赞。另一方面,在对 NPX 进行 2 小时的光电催化氧化过程中,当采用 0.1 V 的偏置电位时,降解效率高达 97.52%。降解过程主要由空穴和羟基自由基积极参与开环和随后的副产物裂解所驱动。这种降解的显著效果可归因于电化学和光催化降解技术的综合协同效应。目前的研究表明,使用基于 MOF/g-C3N4 纳米复合材料的电极材料在废水中进行光电化学传感和去除 NPX 是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信