Application of radio frequency capacitively coupled Ar+H2 plasma on rapid annealing of Cu-based photovoltaic grid line

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Jiawei Zhang , Jiamin Huang , Lei Huang , Zhaoyang Zhou , Yi He , Xue Liu , Feng Wang , Xiaoping Ma , Yu Xin
{"title":"Application of radio frequency capacitively coupled Ar+H2 plasma on rapid annealing of Cu-based photovoltaic grid line","authors":"Jiawei Zhang ,&nbsp;Jiamin Huang ,&nbsp;Lei Huang ,&nbsp;Zhaoyang Zhou ,&nbsp;Yi He ,&nbsp;Xue Liu ,&nbsp;Feng Wang ,&nbsp;Xiaoping Ma ,&nbsp;Yu Xin","doi":"10.1016/j.solmat.2024.113287","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous thinning of photovoltaic silicon wafers for cost reduction, copper based photovoltaic grid lines (Cu-PGL) require annealing and softening treatment. However, for the commonly used short circuit annealing method in industry, some issues exist such as air surface oxidation and environmental pollution, which need to be addressed for large-scale development of high-performance Cu-PGL. In this study, we propose a medium-pressure capacitively coupled plasma driven by radio frequency (RF) for plasma rapid annealing of Cu-PGL to meet solar cell performance requirements. The experimental results show that the yield strength of Cu-PGL decreases from 336.5 MPa to 59 MPa after plasma rapid annealing while electrical conductivity increases from 87 %IACS (International Annealed Copper Standard) to 116 %IACS at the optimal condition of discharge pressure of 1.0 kPa, and input power of 150 W with wire speed of 50 m/min. The plasma annealing mechanism of Cu wire was disclosed by combining spectral diagnosis of the plasma and Cu wire performance characterization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113287"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous thinning of photovoltaic silicon wafers for cost reduction, copper based photovoltaic grid lines (Cu-PGL) require annealing and softening treatment. However, for the commonly used short circuit annealing method in industry, some issues exist such as air surface oxidation and environmental pollution, which need to be addressed for large-scale development of high-performance Cu-PGL. In this study, we propose a medium-pressure capacitively coupled plasma driven by radio frequency (RF) for plasma rapid annealing of Cu-PGL to meet solar cell performance requirements. The experimental results show that the yield strength of Cu-PGL decreases from 336.5 MPa to 59 MPa after plasma rapid annealing while electrical conductivity increases from 87 %IACS (International Annealed Copper Standard) to 116 %IACS at the optimal condition of discharge pressure of 1.0 kPa, and input power of 150 W with wire speed of 50 m/min. The plasma annealing mechanism of Cu wire was disclosed by combining spectral diagnosis of the plasma and Cu wire performance characterization.
射频电容耦合 Ar+H2 等离子体在铜基光伏栅线快速退火中的应用
随着光伏硅片不断减薄以降低成本,铜基光伏栅线(Cu-PGL)需要进行退火和软化处理。然而,工业上常用的短路退火法存在空气表面氧化和环境污染等问题,需要解决这些问题才能大规模开发高性能铜栅极线。在本研究中,我们提出了一种由射频(RF)驱动的中压电容耦合等离子体,用于等离子体快速退火 Cu-PGL,以满足太阳能电池的性能要求。实验结果表明,在放电压力为 1.0 kPa、输入功率为 150 W、线速度为 50 m/min 的最佳条件下,等离子体快速退火后,Cu-PGL 的屈服强度从 336.5 MPa 下降到 59 MPa,而导电率则从 87 %IACS(国际退火铜标准)提高到 116 %IACS。通过结合等离子体光谱诊断和铜线性能表征,揭示了铜线的等离子体退火机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信