Mechanoresponsive self-reinforcement composite hydrogels with triple-network structures

IF 5.8 2区 化学 Q1 POLYMER SCIENCE
Qing-xin Hu , Ran Liu , Zhao Gao , Yu-yu Zhou , Wen-jing Yan , Jin-min Yao , Ze-min Ma , Yan-ru Xue , Meng Zhang , Yan-qin Wang , Xiao-gang Wu , Qiang Li
{"title":"Mechanoresponsive self-reinforcement composite hydrogels with triple-network structures","authors":"Qing-xin Hu ,&nbsp;Ran Liu ,&nbsp;Zhao Gao ,&nbsp;Yu-yu Zhou ,&nbsp;Wen-jing Yan ,&nbsp;Jin-min Yao ,&nbsp;Ze-min Ma ,&nbsp;Yan-ru Xue ,&nbsp;Meng Zhang ,&nbsp;Yan-qin Wang ,&nbsp;Xiao-gang Wu ,&nbsp;Qiang Li","doi":"10.1016/j.eurpolymj.2024.113579","DOIUrl":null,"url":null,"abstract":"<div><div>Composite hydrogels featuring multiple-network structures hold immense potential owing to their superior mechanical attributes and exceptional capacity for dissipating energy. Nonetheless, many multiple-network hydrogels lack mechanoresponsive self-reinforcement capabilities, rendering them susceptible to enduring structural fractures. Hence, it exists a critical need to engineer composite hydrogels with both multiple-network structures and mechanoresponsive self-reinforcement abilities. In this study, we devised a triple-network (TN) hydrogel employing poly (2-acrylamido-2-methylpropane sulfonic acid) sodium salt (PNaAMPS) as the first network, which can generate mechanical radicals upon fracture. While polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC)-Al<sup>3+</sup> served as the secondary and tertiary networks, respectively, so that to optimize its mechanical properties effectively. Upon breakage, the fragmented PNaAMPS chains could act as radical initiators, catalyzing the polymerization of the N-isopropyl acrylamide (NIPAM) monomers within the TN hydrogels to form PNIPAM chains. Furthermore, through successive network disruptions and the infusion of NIPAM monomers, the mechanical strength of the triple-network gel could be significantly enhanced. Furthermore, we evaluated the extent of mechanoresponsive self-reinforcement using the fluorochrome 8-Anilino-1-naphthalene sulfonic acid (ANS) as a fluorescent probe. This probe enabled the quantification of the PNIPAM production visually, which provided valuable feedback of the mechanical strength self-reinforcement levels by the fluorescence signals. Our approach set the stage for the development of mechanoresponsive composite hydrogels with fluorescence feedback capabilities for self-reinforcement assessment.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113579"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008401","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Composite hydrogels featuring multiple-network structures hold immense potential owing to their superior mechanical attributes and exceptional capacity for dissipating energy. Nonetheless, many multiple-network hydrogels lack mechanoresponsive self-reinforcement capabilities, rendering them susceptible to enduring structural fractures. Hence, it exists a critical need to engineer composite hydrogels with both multiple-network structures and mechanoresponsive self-reinforcement abilities. In this study, we devised a triple-network (TN) hydrogel employing poly (2-acrylamido-2-methylpropane sulfonic acid) sodium salt (PNaAMPS) as the first network, which can generate mechanical radicals upon fracture. While polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC)-Al3+ served as the secondary and tertiary networks, respectively, so that to optimize its mechanical properties effectively. Upon breakage, the fragmented PNaAMPS chains could act as radical initiators, catalyzing the polymerization of the N-isopropyl acrylamide (NIPAM) monomers within the TN hydrogels to form PNIPAM chains. Furthermore, through successive network disruptions and the infusion of NIPAM monomers, the mechanical strength of the triple-network gel could be significantly enhanced. Furthermore, we evaluated the extent of mechanoresponsive self-reinforcement using the fluorochrome 8-Anilino-1-naphthalene sulfonic acid (ANS) as a fluorescent probe. This probe enabled the quantification of the PNIPAM production visually, which provided valuable feedback of the mechanical strength self-reinforcement levels by the fluorescence signals. Our approach set the stage for the development of mechanoresponsive composite hydrogels with fluorescence feedback capabilities for self-reinforcement assessment.

Abstract Image

具有三重网络结构的机械粘弹性自增强复合水凝胶
具有多重网络结构的复合水凝胶因其卓越的机械属性和超强的消能能力而具有巨大的潜力。然而,许多多网状水凝胶缺乏机械压缩自加固能力,因此容易发生结构性断裂。因此,亟需设计出同时具有多重网络结构和机械压缩自加固能力的复合水凝胶。在这项研究中,我们设计了一种三重网络(TN)水凝胶,采用聚(2-丙烯酰胺基-2-甲基丙烷磺酸钠)钠盐(PNaAMPS)作为第一重网络,在断裂时可产生机械自由基。聚乙烯醇(PVA)和羧甲基纤维素(CMC)-Al3+ 分别作为第二和第三网络,从而有效优化其机械性能。断裂后,破碎的 PNaAMPS 链可作为自由基引发剂,催化 TN 水凝胶中的 N-异丙基丙烯酰胺(NIPAM)单体聚合,形成 PNIPAM 链。此外,通过连续破坏网络和注入 NIPAM 单体,三重网络凝胶的机械强度可以显著提高。此外,我们还使用荧光探针 8-苯胺基-1-萘磺酸(ANS)评估了机械压缩自加固的程度。这种探针能直观地量化 PNIPAM 的生成,并通过荧光信号对机械强度自加固水平提供有价值的反馈。我们的方法为开发具有荧光反馈能力的机械增效复合水凝胶奠定了基础,可用于自加固评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信