Haoming Li , Shuaibin Wan , Lu Wang , Jiyun Zhao , Dongxu Ji
{"title":"Divide and conquer: Spectral-splitting and utilization of thermal radiation from waste heat in the steel industry","authors":"Haoming Li , Shuaibin Wan , Lu Wang , Jiyun Zhao , Dongxu Ji","doi":"10.1016/j.apenergy.2024.124836","DOIUrl":null,"url":null,"abstract":"<div><div>Approximately 35 % high-temperature waste heat in the steel industry is carried by blast furnace slag and steelmaking slag, and thermal radiation is a primary pathway for this waste heat to dissipate into the ambient environment. Thermophotovoltaic (TPV) systems can convert short-wavelength thermal radiation into electrical energy, but the long-wavelength radiation is still wasted. Here, this work introduces a concept of spectral-splitting (SS) for full-spectrum thermal radiation utilization, allowing simultaneous waste heat recovery by TPV and heat-to-power methods such as Stirling engine (SE). To further demonstrate this concept, an SS TPV-SE system is designed. An optical transmission window of 0–1.7 μm is applied for TPV, and an over 5 μm absorption window is applied for SE. Results show that, with a 0.1 × 1 m molten slag chute, the SS TPV-SE system yields an output power of over 1300 W and achieves an overall efficiency of around 19 %, resulting in an about 58 % improvement compared to the standalone TPV system, and leads to a CO<sub>2</sub> emission reduction of 7516 kg/year. Provided the improved energy efficiency and environmental sustainability, the spectral-splitting concept presented in this work provides a promising approach to enhancing waste heat recovery in the steel industry.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124836"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022190","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Approximately 35 % high-temperature waste heat in the steel industry is carried by blast furnace slag and steelmaking slag, and thermal radiation is a primary pathway for this waste heat to dissipate into the ambient environment. Thermophotovoltaic (TPV) systems can convert short-wavelength thermal radiation into electrical energy, but the long-wavelength radiation is still wasted. Here, this work introduces a concept of spectral-splitting (SS) for full-spectrum thermal radiation utilization, allowing simultaneous waste heat recovery by TPV and heat-to-power methods such as Stirling engine (SE). To further demonstrate this concept, an SS TPV-SE system is designed. An optical transmission window of 0–1.7 μm is applied for TPV, and an over 5 μm absorption window is applied for SE. Results show that, with a 0.1 × 1 m molten slag chute, the SS TPV-SE system yields an output power of over 1300 W and achieves an overall efficiency of around 19 %, resulting in an about 58 % improvement compared to the standalone TPV system, and leads to a CO2 emission reduction of 7516 kg/year. Provided the improved energy efficiency and environmental sustainability, the spectral-splitting concept presented in this work provides a promising approach to enhancing waste heat recovery in the steel industry.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.