Synergistic enhancement of electrical and ionic conductivity in polyvinyl alcohol/polyvinylpyrrolidone‑copper/lithium titanate oxide electrolyte nanocomposite films for Li-ion battery applications

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Abdu Saeed , Amal Mohsen Alghamdi , Maha Aiiad Alenizi , Eman Alzahrani , Randa A. Althobiti , S.A. Al-Ghamdi , Reem Alwafi , G.M. Asnag , Ahmed N. Al-Hakimi , Aeshah Salem , E.M. Abdelrazek
{"title":"Synergistic enhancement of electrical and ionic conductivity in polyvinyl alcohol/polyvinylpyrrolidone‑copper/lithium titanate oxide electrolyte nanocomposite films for Li-ion battery applications","authors":"Abdu Saeed ,&nbsp;Amal Mohsen Alghamdi ,&nbsp;Maha Aiiad Alenizi ,&nbsp;Eman Alzahrani ,&nbsp;Randa A. Althobiti ,&nbsp;S.A. Al-Ghamdi ,&nbsp;Reem Alwafi ,&nbsp;G.M. Asnag ,&nbsp;Ahmed N. Al-Hakimi ,&nbsp;Aeshah Salem ,&nbsp;E.M. Abdelrazek","doi":"10.1016/j.est.2024.114534","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we report the development of polymer nanocomposite electrolyte films tailored for advanced Li-ion battery applications. By incorporating copper/lithium titanate oxide nanoparticles (Cu/Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> NPs) into a polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) blend, we achieved significant enhancements in both ionic and electrical conductivity. The incorporation of Cu boosts the electrical pathways within the polymer matrix, thereby reducing internal resistance and enhancing the overall conductivity. Simultaneously, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> acts as an additional source of Li ions, further elevating ionic transport within the electrolyte. Comprehensive analyses via dielectric and impedance spectroscopy confirmed the influence of Cu/Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> NPs on improving charge storage and transfer capabilities while minimizing electrode polarization across a wide frequency range. These enhancements are attributed to the homogenous distribution of NPs, as validated by scanning electron microscopy (SEM), and the adjusted crystalline characteristics confirmed via X-ray diffraction, leading to increased amorphous regions that support better ion mobility. Fourier-transform infrared spectroscopy (FTIR) also confirms NP-matrix interactions, altering polymer chain dynamics. Besides, thermogravimetric analysis (TGA) indicates increased thermal stability. The results indicate the promising capabilities of these nanocomposite films as efficient solid polymer electrolytes, capable of supporting faster charge-discharge cycles and ensuring enhanced performance and stability in Li-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114534"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report the development of polymer nanocomposite electrolyte films tailored for advanced Li-ion battery applications. By incorporating copper/lithium titanate oxide nanoparticles (Cu/Li4Ti5O12 NPs) into a polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) blend, we achieved significant enhancements in both ionic and electrical conductivity. The incorporation of Cu boosts the electrical pathways within the polymer matrix, thereby reducing internal resistance and enhancing the overall conductivity. Simultaneously, Li4Ti5O12 acts as an additional source of Li ions, further elevating ionic transport within the electrolyte. Comprehensive analyses via dielectric and impedance spectroscopy confirmed the influence of Cu/Li4Ti5O12 NPs on improving charge storage and transfer capabilities while minimizing electrode polarization across a wide frequency range. These enhancements are attributed to the homogenous distribution of NPs, as validated by scanning electron microscopy (SEM), and the adjusted crystalline characteristics confirmed via X-ray diffraction, leading to increased amorphous regions that support better ion mobility. Fourier-transform infrared spectroscopy (FTIR) also confirms NP-matrix interactions, altering polymer chain dynamics. Besides, thermogravimetric analysis (TGA) indicates increased thermal stability. The results indicate the promising capabilities of these nanocomposite films as efficient solid polymer electrolytes, capable of supporting faster charge-discharge cycles and ensuring enhanced performance and stability in Li-ion batteries.
协同增强聚乙烯醇/聚乙烯吡咯烷酮-铜/钛酸锂氧化物电解质纳米复合薄膜的导电性和离子导电性,用于锂离子电池应用
在此,我们报告了专为先进锂离子电池应用开发的聚合物纳米复合电解质薄膜。通过在聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)混合物中加入铜/钛酸锂氧化物纳米粒子(Cu/Li4Ti5O12 NPs),我们显著提高了离子导电性和电导率。铜的加入增强了聚合物基质内的电通路,从而降低了内阻,提高了整体导电性。同时,Li4Ti5O12 作为锂离子的额外来源,进一步提高了电解质内的离子传输。通过介电和阻抗光谱进行的综合分析证实了 Cu/Li4Ti5O12 NPs 对提高电荷存储和传输能力的影响,同时在很宽的频率范围内将电极极化降至最低。经扫描电子显微镜(SEM)验证,这些改进归功于 NPs 的均匀分布,以及经 X 射线衍射证实的调整后的结晶特性,从而增加了非晶区,支持更好的离子迁移率。傅立叶变换红外光谱(FTIR)也证实了 NP 与基质之间的相互作用,从而改变了聚合物链的动力学。此外,热重分析(TGA)表明热稳定性有所提高。研究结果表明,这些纳米复合薄膜有望成为高效的固体聚合物电解质,能够支持更快的充放电循环,并确保提高锂离子电池的性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信