Rafieh Fakhlaei , Arman Amani Babadi , Naziruddin Mat Ariffin , Zou Xiaobo
{"title":"Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey","authors":"Rafieh Fakhlaei , Arman Amani Babadi , Naziruddin Mat Ariffin , Zou Xiaobo","doi":"10.1016/j.foodcont.2024.110996","DOIUrl":null,"url":null,"abstract":"<div><div>A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm<sup>−1</sup>) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R<sup>2</sup>) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"169 ","pages":"Article 110996"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956713524007138","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm−1) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R2) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration.
期刊介绍:
Food Control is an international journal that provides essential information for those involved in food safety and process control.
Food Control covers the below areas that relate to food process control or to food safety of human foods:
• Microbial food safety and antimicrobial systems
• Mycotoxins
• Hazard analysis, HACCP and food safety objectives
• Risk assessment, including microbial and chemical hazards
• Quality assurance
• Good manufacturing practices
• Food process systems design and control
• Food Packaging technology and materials in contact with foods
• Rapid methods of analysis and detection, including sensor technology
• Codes of practice, legislation and international harmonization
• Consumer issues
• Education, training and research needs.
The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.