Predicting batteries second-life state-of-health with first-life data and on-board voltage measurements using support vector regression

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Shymaa Mohammed Jameel , J.M. Altmemi , Ahmed A. Oglah , Mohammad A. Abbas , Ahmad H. Sabry
{"title":"Predicting batteries second-life state-of-health with first-life data and on-board voltage measurements using support vector regression","authors":"Shymaa Mohammed Jameel ,&nbsp;J.M. Altmemi ,&nbsp;Ahmed A. Oglah ,&nbsp;Mohammad A. Abbas ,&nbsp;Ahmad H. Sabry","doi":"10.1016/j.est.2024.114554","DOIUrl":null,"url":null,"abstract":"<div><div>Electric vehicle (EV) batteries experience significant degradation during their primary use. While reaching End-of-Life (EOL) for EVs, these batteries hold the potential for a “Second-life” in less demanding applications. However, accurate estimation for State-of-Health (SoH) remains a challenging task as it requires extensive monitoring communications in Second-life settings. This study proposes a novel data-efficient approach to predicting Second-life SoH with minimal Second-life measurements and readily available first-life data. This work introduces a Support Vector Regression (SVR) model trained on first-life features to estimate discharge capacity in the Second-life. Only terminal voltage measurements (TIECVD and TIEDVD) during Second-life operation are utilized to predict SoH. Unlike existing methods involving broad Second-life monitoring, this approach focuses on energy delivery as an indicator of the battery's ability to power continuous operation, reducing complexity and data acquisition costs. To validate the proposed technique, we conducted experiments using Lithium-ion batteries with NASA's dataset including three different battery models. The results of using the SVR model achieved a Root Mean Square Error (RMSE) between actual and predicted SoH data ranging from 0.0012 to 0.0158, signifying its effectiveness over various battery types. This innovative SoH prediction method using first-life data and minimal Second-life measurements clears the way for better predicting the Remaining Useful Life (RUL) in Second-life EV batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114554"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicle (EV) batteries experience significant degradation during their primary use. While reaching End-of-Life (EOL) for EVs, these batteries hold the potential for a “Second-life” in less demanding applications. However, accurate estimation for State-of-Health (SoH) remains a challenging task as it requires extensive monitoring communications in Second-life settings. This study proposes a novel data-efficient approach to predicting Second-life SoH with minimal Second-life measurements and readily available first-life data. This work introduces a Support Vector Regression (SVR) model trained on first-life features to estimate discharge capacity in the Second-life. Only terminal voltage measurements (TIECVD and TIEDVD) during Second-life operation are utilized to predict SoH. Unlike existing methods involving broad Second-life monitoring, this approach focuses on energy delivery as an indicator of the battery's ability to power continuous operation, reducing complexity and data acquisition costs. To validate the proposed technique, we conducted experiments using Lithium-ion batteries with NASA's dataset including three different battery models. The results of using the SVR model achieved a Root Mean Square Error (RMSE) between actual and predicted SoH data ranging from 0.0012 to 0.0158, signifying its effectiveness over various battery types. This innovative SoH prediction method using first-life data and minimal Second-life measurements clears the way for better predicting the Remaining Useful Life (RUL) in Second-life EV batteries.
使用支持向量回归法,利用第一生命周期数据和车载电压测量值预测电池第二生命周期的健康状况
电动汽车(EV)电池在其主要使用过程中会出现严重退化。虽然电动汽车的电池寿命已到终点(EOL),但这些电池在要求不高的应用中仍有 "第二寿命 "的潜力。然而,对电池健康状况(SoH)的准确估计仍然是一项具有挑战性的任务,因为这需要在 "第二寿命 "环境中进行广泛的监控通信。本研究提出了一种新颖的数据高效方法,利用最少的 "第二生命期 "测量数据和随时可用的 "第一生命期 "数据来预测 "第二生命期 "的健康状况。这项工作引入了一个支持向量回归(SVR)模型,该模型根据第一生命周期的特征进行训练,以估算第二生命周期的放电容量。仅利用第二生命周期运行期间的端电压测量值(TIECVD 和 TIEDVD)来预测 SoH。与涉及广泛的第二寿命监测的现有方法不同,这种方法侧重于将能量输送作为电池持续运行能力的指标,从而降低了复杂性和数据采集成本。为了验证所提出的技术,我们使用锂离子电池和 NASA 的数据集(包括三种不同的电池模型)进行了实验。使用 SVR 模型的结果表明,实际 SoH 数据与预测 SoH 数据之间的均方根误差(RMSE)在 0.0012 到 0.0158 之间,这表明它对各种类型的电池都很有效。这种创新的 SoH 预测方法使用了第一生命周期数据和最少的第二生命周期测量数据,为更好地预测第二生命周期电动汽车电池的剩余使用寿命 (RUL) 开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信