{"title":"“All-on-a-Tube” POCT of Salmonella in large-volume sample","authors":"Lei Wang, Nana Jin, Meixuan Li, Jianhan Lin","doi":"10.1016/j.sbsr.2024.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Point-of-care testing (POCT) of pathogenic bacteria at low concentrations is vital to early warning of bacterial contaminations. A disposable centrifuge tube was reconstructed in this study for sensitive <em>Salmonella</em> detection in large-volume samples, where the entire bacterial detection progress from separation to detection, was performed within the tube. The bottom of this centrifuge tube was assembled with a flexible stirrer containing a pair of circular magnets, which was rapidly rotated using a DC motor to produce the vortex for simultaneous mixing and capture of target bacteria. Besides, immune manganese dioxide nanoflowers were synthesized and used to label target bacteria, followed by mimicking catalyze colorless TMB substrate into blue TMBox product. The product image was captured and analyzed by a smartphone App to quantitatively determine the target bacteria. This POCT centrifuge tube effectively achieved a separation efficiency of approximately 80 % for target bacteria from a 10 mL sample, enabling the detection of target bacteria within the range of 1.3 × 10<sup>1</sup> to 1.3 × 10<sup>4</sup> CFU/mL in 1 h, with a low detection limit of 13 CFU/mL. More importantly, this reconstructed centrifuge tube demonstrated its potential as a laboratory consumable for bacterial detection in routine screening owing to the features of low cost, easy operation and high integration.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100712"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Point-of-care testing (POCT) of pathogenic bacteria at low concentrations is vital to early warning of bacterial contaminations. A disposable centrifuge tube was reconstructed in this study for sensitive Salmonella detection in large-volume samples, where the entire bacterial detection progress from separation to detection, was performed within the tube. The bottom of this centrifuge tube was assembled with a flexible stirrer containing a pair of circular magnets, which was rapidly rotated using a DC motor to produce the vortex for simultaneous mixing and capture of target bacteria. Besides, immune manganese dioxide nanoflowers were synthesized and used to label target bacteria, followed by mimicking catalyze colorless TMB substrate into blue TMBox product. The product image was captured and analyzed by a smartphone App to quantitatively determine the target bacteria. This POCT centrifuge tube effectively achieved a separation efficiency of approximately 80 % for target bacteria from a 10 mL sample, enabling the detection of target bacteria within the range of 1.3 × 101 to 1.3 × 104 CFU/mL in 1 h, with a low detection limit of 13 CFU/mL. More importantly, this reconstructed centrifuge tube demonstrated its potential as a laboratory consumable for bacterial detection in routine screening owing to the features of low cost, easy operation and high integration.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.