Spatiotemporal evolutionary characteristics of vegetation restoration after historical earthquake landslides from 1985 to 2020: A case study of Tianshui City, China

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xing Su , Jing Jia , Jun Zhang , Xia Li , Manyin Zhang
{"title":"Spatiotemporal evolutionary characteristics of vegetation restoration after historical earthquake landslides from 1985 to 2020: A case study of Tianshui City, China","authors":"Xing Su ,&nbsp;Jing Jia ,&nbsp;Jun Zhang ,&nbsp;Xia Li ,&nbsp;Manyin Zhang","doi":"10.1016/j.ecolind.2024.112798","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquakes occurring in mountainous regions have the potential to trigger a significant proliferation of landslides, greatly change the landforms, and exert a long-term impact on vegetation. Since the resurrection of ancient landslides has shown an upward trend in recent years, exploring the vegetation restoration and landslide activity of historical seismic landslides can prevent the occurrence of disasters in the future. In this study, we offer a novel calculation method for the evaluation of vegetation restoration of historical seismic landslides. There were 469 landslides in our study area that encompassed a total area of 87.70 km<sup>2</sup>. Based on the 30-m resolution normalized difference vegetation index (NDVI) data of the Tianshui City area from 1985 to 2020, which was used to quantify the vegetation restoration and landslide activity in the landslide area, we adopted the indicators of vegetation cover and vegetation restoration rate. In our analysis, the NDVI and FVC of the landslide area showed a fluctuating increase, the vegetation recovery rate of the landslide area using both VRR<sub>M</sub> and VRR<sub>N</sub> calculations demonstrated an increasing trend, and the number of active landslides decreased. However, the results of the VRR<sub>N</sub> calculation more accurately assessed the vegetation recovery of the landslide area in the long term, and proved that recovery was superior in 1990. The restoration of vegetation was affected by regional precipitation, altitude, human activities, and disaster activities; and landslides in the study area recovered least in 1990–1995 and most in 2005–2020. The present study of vegetation restoration for a disaster area provides a reference for the restoration, utilization, planning, and related research of landslide disasters in the region.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112798"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X2401255X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquakes occurring in mountainous regions have the potential to trigger a significant proliferation of landslides, greatly change the landforms, and exert a long-term impact on vegetation. Since the resurrection of ancient landslides has shown an upward trend in recent years, exploring the vegetation restoration and landslide activity of historical seismic landslides can prevent the occurrence of disasters in the future. In this study, we offer a novel calculation method for the evaluation of vegetation restoration of historical seismic landslides. There were 469 landslides in our study area that encompassed a total area of 87.70 km2. Based on the 30-m resolution normalized difference vegetation index (NDVI) data of the Tianshui City area from 1985 to 2020, which was used to quantify the vegetation restoration and landslide activity in the landslide area, we adopted the indicators of vegetation cover and vegetation restoration rate. In our analysis, the NDVI and FVC of the landslide area showed a fluctuating increase, the vegetation recovery rate of the landslide area using both VRRM and VRRN calculations demonstrated an increasing trend, and the number of active landslides decreased. However, the results of the VRRN calculation more accurately assessed the vegetation recovery of the landslide area in the long term, and proved that recovery was superior in 1990. The restoration of vegetation was affected by regional precipitation, altitude, human activities, and disaster activities; and landslides in the study area recovered least in 1990–1995 and most in 2005–2020. The present study of vegetation restoration for a disaster area provides a reference for the restoration, utilization, planning, and related research of landslide disasters in the region.
1985-2020年历史性地震滑坡后植被恢复的时空演变特征:中国天水市案例研究
发生在山区的地震有可能引发大量滑坡,极大地改变地貌,并对植被产生长期影响。由于近年来古滑坡的复活呈上升趋势,因此探索历史地震滑坡的植被恢复和滑坡活动可以预防未来灾害的发生。本研究为历史地震滑坡的植被恢复评价提供了一种新的计算方法。研究区域内共有 469 处滑坡,总面积达 87.70 平方公里。根据 1985-2020 年天水市区 30m 分辨率归一化差异植被指数(NDVI)数据,采用植被覆盖率和植被恢复率指标对滑坡区植被恢复和滑坡活动情况进行量化分析。分析结果表明,滑坡区的 NDVI 和 FVC 呈波动上升趋势,采用 VRRM 和 VRRN 计算的滑坡区植被恢复率呈上升趋势,活动滑坡体数量减少。然而,VRRN 计算结果更准确地评估了滑坡区植被的长期恢复情况,并证明 1990 年的恢复情况较好。植被恢复受区域降水、海拔、人类活动和灾害活动的影响;研究区域内的滑坡在 1990-1995 年恢复得最少,在 2005-2020 年恢复得最多。本次灾区植被恢复研究为该地区滑坡灾害的恢复、利用、规划及相关研究提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信