{"title":"Invasion of Pine Wilt Disease: A threat to forest carbon storage in China","authors":"Bohai Hu , Wenjiang Huang , Zhuoqing Hao , Jing Guo , Yanru Huang , Xiangzhe Cheng , Jing Zhao , Quanjun Jiao , Biyao Zhang","doi":"10.1016/j.ecolind.2024.112819","DOIUrl":null,"url":null,"abstract":"<div><div>China’s forests, which balance atmospheric carbon (C) levels through photosynthesis, play a crucial role in combating global climate change. The emergence of Pine wilt disease (PWD), caused by the pine wood nematode (PWN, <em>Bursaphelenchus xylophilus</em>), has challenged the stability of these forests, leading to significant tree mortality and disrupting the original ecological balance. However, the impact of PWD on carbon storage and recovery in Chinese forests remains unclear. In this study, we integrated multiple data sources, including forest surveys, remote sensing, and meteorological observations, and applied a method of finely partitioning the resistance of host pine trees across China. Using the MaxEnt model, a live carbon risk model, and a C recovery REGIME model that incorporates disturbance mechanisms, we predicted the forest C risk loss caused by the comprehensive invasion of PWD and assessed the C recovery time for affected forests. We estimate that the total risk of C loss due to PWD invasion under current climate conditions in Chinese forests is 483.23 Tg C, with an average C recovery time of 13.95 years. The main risk areas for PWD are concentrated in the southern coastal regions of China and adjacent provinces, presenting a risk spillover pattern that radiates from focal areas outward. The six provinces with the highest forest risk degree (risk C/total regional C) are, in order, Fujian (13.69%), Zhejiang (9.42%), Hunan (7.49%), Guangxi (7.40%), Jiangxi (7.35%), and Guangdong (7.05%). Our findings indicate that the severe consequences of PWD invasion have transformed affected forests from C sinks to sources. This underscores the urgency of implementing effective measures to block its introduction and spread, thereby promoting the recovery and sustainable development of forest ecosystems.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112819"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012767","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
China’s forests, which balance atmospheric carbon (C) levels through photosynthesis, play a crucial role in combating global climate change. The emergence of Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), has challenged the stability of these forests, leading to significant tree mortality and disrupting the original ecological balance. However, the impact of PWD on carbon storage and recovery in Chinese forests remains unclear. In this study, we integrated multiple data sources, including forest surveys, remote sensing, and meteorological observations, and applied a method of finely partitioning the resistance of host pine trees across China. Using the MaxEnt model, a live carbon risk model, and a C recovery REGIME model that incorporates disturbance mechanisms, we predicted the forest C risk loss caused by the comprehensive invasion of PWD and assessed the C recovery time for affected forests. We estimate that the total risk of C loss due to PWD invasion under current climate conditions in Chinese forests is 483.23 Tg C, with an average C recovery time of 13.95 years. The main risk areas for PWD are concentrated in the southern coastal regions of China and adjacent provinces, presenting a risk spillover pattern that radiates from focal areas outward. The six provinces with the highest forest risk degree (risk C/total regional C) are, in order, Fujian (13.69%), Zhejiang (9.42%), Hunan (7.49%), Guangxi (7.40%), Jiangxi (7.35%), and Guangdong (7.05%). Our findings indicate that the severe consequences of PWD invasion have transformed affected forests from C sinks to sources. This underscores the urgency of implementing effective measures to block its introduction and spread, thereby promoting the recovery and sustainable development of forest ecosystems.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.