Quoc Kinh Tran , Chih-Ping Lin , Ernian Pan , Tsai-Jung Wu , Yin-Ming Po
{"title":"Novel fast full-wavefield modeling of air-coupled surface waves and its implications for non-contact pavement testing","authors":"Quoc Kinh Tran , Chih-Ping Lin , Ernian Pan , Tsai-Jung Wu , Yin-Ming Po","doi":"10.1016/j.ndteint.2024.103266","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel approach for deriving and modeling air-coupled surface waves with applications in non-contact non-destructive testing (NDT). It is based on the fast Fourier-Bessel series system in conjunction with the unconditionally stable dual-variable and position matrix method. Parametric studies, including sensitivity analysis, are conducted to assess the feasibility of using non-contact air-coupled measurements for pavement testing, focusing on Green's functions, time-domain waveforms, and experimental frequency-velocity spectra (FVS, i.e., the estimated Green's functions from acquired truncated wavefield). The predicted experimental FVS presented in this study are synthetic dispersion images, which are distinguished from the measured experimental FVS (i.e., measured dispersion images from multichannel analysis of surface wave (MASW) test). With the derived complete solution of air-coupled dynamic responses, we find that: <strong>(1)</strong> Striking similarities between the theoretical Green's functions of vertical displacement (on the pavement surface) and pressure (in the air), as well as in their corresponding experimental FVS. <strong>(2)</strong> The proposed accurate and efficient full-wave modeling of air-coupled surface waves avoids the need for good contact between geophones/accelerometers and pavement surface. This facilitates direct inversion of shear wave velocity profiles by fitting the predicted experimental FVS to the measured one. <strong>(3)</strong> Sensitivity analysis demonstrates no significant loss of information in the pressure measured in the air, supporting the feasibility of using non-contact measurement for non-destructive testing. These results suggest that non-contact air-coupled measurements hold great promise as a viable alternative to contact measurements in non-destructive testing.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103266"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002317","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel approach for deriving and modeling air-coupled surface waves with applications in non-contact non-destructive testing (NDT). It is based on the fast Fourier-Bessel series system in conjunction with the unconditionally stable dual-variable and position matrix method. Parametric studies, including sensitivity analysis, are conducted to assess the feasibility of using non-contact air-coupled measurements for pavement testing, focusing on Green's functions, time-domain waveforms, and experimental frequency-velocity spectra (FVS, i.e., the estimated Green's functions from acquired truncated wavefield). The predicted experimental FVS presented in this study are synthetic dispersion images, which are distinguished from the measured experimental FVS (i.e., measured dispersion images from multichannel analysis of surface wave (MASW) test). With the derived complete solution of air-coupled dynamic responses, we find that: (1) Striking similarities between the theoretical Green's functions of vertical displacement (on the pavement surface) and pressure (in the air), as well as in their corresponding experimental FVS. (2) The proposed accurate and efficient full-wave modeling of air-coupled surface waves avoids the need for good contact between geophones/accelerometers and pavement surface. This facilitates direct inversion of shear wave velocity profiles by fitting the predicted experimental FVS to the measured one. (3) Sensitivity analysis demonstrates no significant loss of information in the pressure measured in the air, supporting the feasibility of using non-contact measurement for non-destructive testing. These results suggest that non-contact air-coupled measurements hold great promise as a viable alternative to contact measurements in non-destructive testing.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.