Hafez Ahmad , Leandro E. Miranda , Corey G. Dunn , Melanie R. Boudreau , Michael E. Colvin
{"title":"Connectivity patterns between floodplain lakes and neighboring streams in the historical floodplain of the Lower Mississippi River","authors":"Hafez Ahmad , Leandro E. Miranda , Corey G. Dunn , Melanie R. Boudreau , Michael E. Colvin","doi":"10.1016/j.ecolind.2024.112808","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrologic connectivity, the network of water pathways linking aquatic habitats, is vital for the exchange of organisms and abiotic materials between rivers and adjacent waterbodies. This study quantified hydrologic connectivity for 1,283 lakes in the Lower Mississippi River floodplain using satellite imagery, streamgauge data, and geospatial information. We aimed to assess connection frequency patterns between lakes and streams. Eight metrics describing temporal aspects of hydrologic connectivity were estimated, identifying trends by lake features and by stream size. Each lake exhibited a distinct pattern of connection, with specific months of connectivity followed by disconnection, likely influenced by lake characteristics and seasonal precipitation. Larger lakes showed increased connectivity, likely due to their surface area and volume, while smaller lakes were more prone to isolation, especially during dry periods. Lakes connected to large streams exhibited more prolonged and recurring connections, with less seasonal variation. In contrast, lakes near agricultural areas experienced reduced connectivity. However, local factors such as levees and artificial channels often disrupted these general trends. This hydrologic connectivity analysis can provide insight to support floodplain management, facilitate development of frameworks that restore connectivity, promote preservation of ecological integrity, and support management of invasive species spread in agricultural floodplains.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112808"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012652","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrologic connectivity, the network of water pathways linking aquatic habitats, is vital for the exchange of organisms and abiotic materials between rivers and adjacent waterbodies. This study quantified hydrologic connectivity for 1,283 lakes in the Lower Mississippi River floodplain using satellite imagery, streamgauge data, and geospatial information. We aimed to assess connection frequency patterns between lakes and streams. Eight metrics describing temporal aspects of hydrologic connectivity were estimated, identifying trends by lake features and by stream size. Each lake exhibited a distinct pattern of connection, with specific months of connectivity followed by disconnection, likely influenced by lake characteristics and seasonal precipitation. Larger lakes showed increased connectivity, likely due to their surface area and volume, while smaller lakes were more prone to isolation, especially during dry periods. Lakes connected to large streams exhibited more prolonged and recurring connections, with less seasonal variation. In contrast, lakes near agricultural areas experienced reduced connectivity. However, local factors such as levees and artificial channels often disrupted these general trends. This hydrologic connectivity analysis can provide insight to support floodplain management, facilitate development of frameworks that restore connectivity, promote preservation of ecological integrity, and support management of invasive species spread in agricultural floodplains.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.