Manman Zhang , Lian Zhai , Yue Xue , Yujie Xu , Weijie Wu , Yong Jiang , Jianming Gong
{"title":"Unusual intermediate layer precipitation in low-temperature salt bath nitrocarburized 316L austenitic stainless steel","authors":"Manman Zhang , Lian Zhai , Yue Xue , Yujie Xu , Weijie Wu , Yong Jiang , Jianming Gong","doi":"10.1016/j.surfcoat.2024.131521","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on investigating the precipitation behavior of the expanded austenite during low-temperature salt bath nitrocarburizing by adjusting the treatment temperature and time. The results indicate that the nitrocarburizing layer consists of a N-rich expanded austenite layer near the surface, and a C-rich expanded austenite layer closer to the substrate. Notably, all precipitates occur within the N-rich expanded austenite. When the temperature exceeds 430 °C, Cr<sub>3</sub>C<sub>2</sub> and M<sub>2-3</sub>N emerge in the near-surface region. Furthermore, at 470 °C, with the prolongation of time, the M<sub>2-3</sub>N near the surface gradually decreases and even disappears, as the increase in carbon content within the N-rich expanded austenite enhances its stability. Specifically, at 430 °C, due to the high chemical potential of carbon and the nitrogen-induced lattice expansion, M<sub>5</sub>C<sub>2</sub> forms near the interface between the N-rich layer and the C-rich layer. However, when the temperature rises to 470 °C, a significant amount of thermodynamically more stable M<sub>7</sub>C<sub>3</sub> and M<sub>23</sub>C<sub>6</sub> precipitates with the assistance of chromium diffusion. These findings may provide new insights for the process design and performance optimization of nitrocarburizing.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131521"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011526","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on investigating the precipitation behavior of the expanded austenite during low-temperature salt bath nitrocarburizing by adjusting the treatment temperature and time. The results indicate that the nitrocarburizing layer consists of a N-rich expanded austenite layer near the surface, and a C-rich expanded austenite layer closer to the substrate. Notably, all precipitates occur within the N-rich expanded austenite. When the temperature exceeds 430 °C, Cr3C2 and M2-3N emerge in the near-surface region. Furthermore, at 470 °C, with the prolongation of time, the M2-3N near the surface gradually decreases and even disappears, as the increase in carbon content within the N-rich expanded austenite enhances its stability. Specifically, at 430 °C, due to the high chemical potential of carbon and the nitrogen-induced lattice expansion, M5C2 forms near the interface between the N-rich layer and the C-rich layer. However, when the temperature rises to 470 °C, a significant amount of thermodynamically more stable M7C3 and M23C6 precipitates with the assistance of chromium diffusion. These findings may provide new insights for the process design and performance optimization of nitrocarburizing.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.