{"title":"Surface modification of WE43 Mg alloy via combination of cold spray and micro-arc oxidation for wear related applications at high temperatures","authors":"Mertcan Kaba , Faiz Muhaffel , Ugur Malayoglu , Huseyin Cimenoglu","doi":"10.1016/j.surfcoat.2024.131530","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al<sub>2</sub>O<sub>3</sub> composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al<sub>2</sub>O<sub>3</sub>–based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al<sub>2</sub>O<sub>3</sub>-based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al<sub>2</sub>O<sub>3</sub>-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al<sub>2</sub>O<sub>3</sub>-based layer intact with the underlying Al/Al<sub>2</sub>O<sub>3</sub> composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131530"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011617","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al2O3 composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al2O3–based layer over the Al/Al2O3 composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al2O3-based layer over the Al/Al2O3 composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al2O3-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al2O3-based layer intact with the underlying Al/Al2O3 composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.