Fengkun Li , Pingze Zhang , Dongbo Wei , Rajdeep Singh Rawat , Bo Ouyang , Rongqing Liang , Hepeng Jia , Rongjian Tai
{"title":"Investigation on the high temperature tribological behaviors of pristine and plasma-based Mo-Si-Ti coated γ-TiAl","authors":"Fengkun Li , Pingze Zhang , Dongbo Wei , Rajdeep Singh Rawat , Bo Ouyang , Rongqing Liang , Hepeng Jia , Rongjian Tai","doi":"10.1016/j.surfcoat.2024.131512","DOIUrl":null,"url":null,"abstract":"<div><div>A Mo-Si-Ti coated γ-TiAl substrate was fabricated using plasma alloying technology to enhance its high temperature wear resistance. The coated substrate was composed of a deposition layer and a diffusion layer, with the grain size decreasing from the substrate toward the coating, forming a gradient structure. XRD and TEM analysis revealed that the deposition layer included the (Ti, Mo)<sub>5</sub>Si<sub>3</sub>, TiSi and MoSi<sub>2</sub>, while the diffusion layer consisted of the γ-TiAl, TiSi and Al<sub>8</sub>Mo<sub>3</sub>. Nanoindentation results showed that the coated substrate exhibited high hardness (19.6 GPa), as well as high plastic deformation resistance and load-bearing capacity. Furthermore, the presence of residual compressive stress (−1255.9 MPa), stress concentrations at interfaces between different phases and gradient structure contributed to the high surface fracture toughness of the coated substrate. Wear testing indicated that the lower nanomechanical properties of pristine substrate combined with the dynamic cyclic generation of oxide film during high temperature friction caused to an increase in specific wear rate at loads of 4.2 N and 6.2 N. However, post-oxidation hardness elevation as well as the lubrication and supportive effect of extensively covered oxide film reduced the wear rate as load increased to 8.2 N. The transition from residual compressive stress to tensile stress along with the formation of oxides at grain boundaries reduced the surface fracture toughness of the coated substrate. Meanwhile, the rapid formation and spalling of oxide film resulted in an increase in the specific wear rate of the coated substrate with increasing load. Nevertheless, coated substrate exhibited better wear resistance than pristine substrate owing to its higher surface mechanical properties. The specific wear rates of the coated substrate were 3.7, 6.0 and 19.5 × 10<sup>−5</sup> mm<sup>3</sup>N<sup>−1</sup> m<sup>−1</sup> at loads of 4.2, 6.2 and 8.2 N, respectively, reflecting reductions of 88.9 %, 84.3 %, and 34.6 % compared to the pristine substrate.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131512"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
A Mo-Si-Ti coated γ-TiAl substrate was fabricated using plasma alloying technology to enhance its high temperature wear resistance. The coated substrate was composed of a deposition layer and a diffusion layer, with the grain size decreasing from the substrate toward the coating, forming a gradient structure. XRD and TEM analysis revealed that the deposition layer included the (Ti, Mo)5Si3, TiSi and MoSi2, while the diffusion layer consisted of the γ-TiAl, TiSi and Al8Mo3. Nanoindentation results showed that the coated substrate exhibited high hardness (19.6 GPa), as well as high plastic deformation resistance and load-bearing capacity. Furthermore, the presence of residual compressive stress (−1255.9 MPa), stress concentrations at interfaces between different phases and gradient structure contributed to the high surface fracture toughness of the coated substrate. Wear testing indicated that the lower nanomechanical properties of pristine substrate combined with the dynamic cyclic generation of oxide film during high temperature friction caused to an increase in specific wear rate at loads of 4.2 N and 6.2 N. However, post-oxidation hardness elevation as well as the lubrication and supportive effect of extensively covered oxide film reduced the wear rate as load increased to 8.2 N. The transition from residual compressive stress to tensile stress along with the formation of oxides at grain boundaries reduced the surface fracture toughness of the coated substrate. Meanwhile, the rapid formation and spalling of oxide film resulted in an increase in the specific wear rate of the coated substrate with increasing load. Nevertheless, coated substrate exhibited better wear resistance than pristine substrate owing to its higher surface mechanical properties. The specific wear rates of the coated substrate were 3.7, 6.0 and 19.5 × 10−5 mm3N−1 m−1 at loads of 4.2, 6.2 and 8.2 N, respectively, reflecting reductions of 88.9 %, 84.3 %, and 34.6 % compared to the pristine substrate.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.