Shiqi Fan , Stephen Fairclough , Abdul Khalique , Alan Bury , Zaili Yang
{"title":"Towards advanced decision-making support for shipping safety: A functional connectivity analysis","authors":"Shiqi Fan , Stephen Fairclough , Abdul Khalique , Alan Bury , Zaili Yang","doi":"10.1016/j.tre.2024.103861","DOIUrl":null,"url":null,"abstract":"<div><div>Decision making (DM) is essential and proven to be a natural and inherent part of the success of transport systems, particularly given the fast growth of autonomous systems in transport. It is critical but remains challenging to understand and predict DM performance in transport, because operators’ mental states have not been effectively considered in complex DM processes such as ship anti-collision operations. This paper proposes an advanced decision support methodology that pioneers the incorporation of objective neurophysiological and subjective data to analyse functional connectivity in the brain and predict DM performance in ship navigation. Experiments were conducted using a functional Near-Infrared Spectroscopy (fNIRS) technology to explore the functional connectivity of two groups (low workload and high workload) and predict their DM performance in a ship collision avoidance situation. It brings brain science into transport engineering and the results generate new contributions to the existing knowledge, including (1) the establishment of a methodology to detect different workload levels in safety–critical transport systems using psychophysiological measurement; (2) analysis of brain’s functional connectivity of different groups of decision makers (e.g., seafarers) with high and low workload tasks; (3) an advanced methodology to assess human reliability in complex scenarios and predict operational behaviours; (4) pioneering a human-centred approach to predict DM performance and demonstrate its feasibility in shipping. From a practical perspective, stakeholders can utilise the findings of this study to rationally evaluate human performance in transport system operations, aiding in operator qualification and certification processes. Furthermore, it is critical for adaptive automation regarding DM support in safety–critical systems.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"193 ","pages":"Article 103861"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524004526","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Decision making (DM) is essential and proven to be a natural and inherent part of the success of transport systems, particularly given the fast growth of autonomous systems in transport. It is critical but remains challenging to understand and predict DM performance in transport, because operators’ mental states have not been effectively considered in complex DM processes such as ship anti-collision operations. This paper proposes an advanced decision support methodology that pioneers the incorporation of objective neurophysiological and subjective data to analyse functional connectivity in the brain and predict DM performance in ship navigation. Experiments were conducted using a functional Near-Infrared Spectroscopy (fNIRS) technology to explore the functional connectivity of two groups (low workload and high workload) and predict their DM performance in a ship collision avoidance situation. It brings brain science into transport engineering and the results generate new contributions to the existing knowledge, including (1) the establishment of a methodology to detect different workload levels in safety–critical transport systems using psychophysiological measurement; (2) analysis of brain’s functional connectivity of different groups of decision makers (e.g., seafarers) with high and low workload tasks; (3) an advanced methodology to assess human reliability in complex scenarios and predict operational behaviours; (4) pioneering a human-centred approach to predict DM performance and demonstrate its feasibility in shipping. From a practical perspective, stakeholders can utilise the findings of this study to rationally evaluate human performance in transport system operations, aiding in operator qualification and certification processes. Furthermore, it is critical for adaptive automation regarding DM support in safety–critical systems.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.