Synthesis of zirconium-based metal-organic framework under mild conditions and its application to the removal of cationic and anionic dyes from wastewater
Luyao Shen , Faqiang Guo , Yundong Hang , Jingming Yang , Zhifen Guo , Wenhui Liang , Pan Du , Wenmei Jiao
{"title":"Synthesis of zirconium-based metal-organic framework under mild conditions and its application to the removal of cationic and anionic dyes from wastewater","authors":"Luyao Shen , Faqiang Guo , Yundong Hang , Jingming Yang , Zhifen Guo , Wenhui Liang , Pan Du , Wenmei Jiao","doi":"10.1016/j.jpcs.2024.112452","DOIUrl":null,"url":null,"abstract":"<div><div>Water resources contaminated by industrial dyes can pose a significant threat to the environment and human health. Herein, we conducted a study on the removal of cationic and anionic dyes, such as methylene blue (MB) and methyl orange (MO), using MIL-140A, a zirconium-based metal-organic framework. MIL-140A is synthesized in a Schlenk flask at 120 °C, whereas its conventional synthesis route involves a teflon-sealed autoclave at 220 °C, highlighting the cost reduction and lower equipment requirements of the low-temperature synthesis. The structure of MIL-140A is characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and nitrogen adsorption techniques. The optimal pH for the adsorption of two dyes by MIL-140A is pH 5–8 for MB and pH 3 for MO. The adsorption equilibrium can be reached within 60 min at room temperature, and the adsorption of both dyes on MIL-140A follows pseudo-second-order kinetics and Langmuir isotherm, and the maximum adsorption capacity of MO and MB by MIL-140A were 163.6 and 89.2 mg/g, respectively. Thermodynamic studies indicate an entropy-driven spontaneous process. The adsorption mechanism of MO and MB on MIL-140A is investigated using FT-IR and X-ray photoelectron spectroscopy. The adsorption of MO involves coordination between Zr and sulfonate, while MB adsorption occurs via π-π interactions. Additionally, MIL-140A exhibits better removal efficiency for MO from lithium battery wastewater compared to MB, primarily due to stronger coordination interactions than π-π interactions. These findings demonstrate that MIL-140A is a promising adsorbent for effectively removing both anionic and cationic dyes from water resources.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112452"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005870","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water resources contaminated by industrial dyes can pose a significant threat to the environment and human health. Herein, we conducted a study on the removal of cationic and anionic dyes, such as methylene blue (MB) and methyl orange (MO), using MIL-140A, a zirconium-based metal-organic framework. MIL-140A is synthesized in a Schlenk flask at 120 °C, whereas its conventional synthesis route involves a teflon-sealed autoclave at 220 °C, highlighting the cost reduction and lower equipment requirements of the low-temperature synthesis. The structure of MIL-140A is characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and nitrogen adsorption techniques. The optimal pH for the adsorption of two dyes by MIL-140A is pH 5–8 for MB and pH 3 for MO. The adsorption equilibrium can be reached within 60 min at room temperature, and the adsorption of both dyes on MIL-140A follows pseudo-second-order kinetics and Langmuir isotherm, and the maximum adsorption capacity of MO and MB by MIL-140A were 163.6 and 89.2 mg/g, respectively. Thermodynamic studies indicate an entropy-driven spontaneous process. The adsorption mechanism of MO and MB on MIL-140A is investigated using FT-IR and X-ray photoelectron spectroscopy. The adsorption of MO involves coordination between Zr and sulfonate, while MB adsorption occurs via π-π interactions. Additionally, MIL-140A exhibits better removal efficiency for MO from lithium battery wastewater compared to MB, primarily due to stronger coordination interactions than π-π interactions. These findings demonstrate that MIL-140A is a promising adsorbent for effectively removing both anionic and cationic dyes from water resources.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.