Zhiqiang Zhai , Leqi Zhang , Guohua Song , Xiao Li , Lei Yu
{"title":"Modeling energy consumption for battery electric vehicles based on in-use vehicle trajectories","authors":"Zhiqiang Zhai , Leqi Zhang , Guohua Song , Xiao Li , Lei Yu","doi":"10.1016/j.trd.2024.104509","DOIUrl":null,"url":null,"abstract":"<div><div>The development of battery electric vehicles (BEVs) raises a demand to develop a tool to estimate and predict their energy consumption accurately and efficiently. This study proposes a model to estimate the energy consumption of BEVs based on the trajectories of in-use vehicles, including both BEVs and internal combustion engine vehicles (ICEVs). This model consists of three modules: vehicle specific power (VSP) distributions, energy consumption rates, travel time and mileages. The estimation results are validated and compared with those derived from driving cycles and instantaneous speeds. It is found that the VSP distributions can capture the variation of the energy consumption relating to average speeds, and the results are unbiased with average errors less than 1.9%, comparing with instantaneous speeds. It is practicable to employ the trajectories of ICEVs to model the activity of BEVs for energy consumption estimates, and the average errors are less than 2.7%.</div></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"137 ","pages":"Article 104509"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924004668","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The development of battery electric vehicles (BEVs) raises a demand to develop a tool to estimate and predict their energy consumption accurately and efficiently. This study proposes a model to estimate the energy consumption of BEVs based on the trajectories of in-use vehicles, including both BEVs and internal combustion engine vehicles (ICEVs). This model consists of three modules: vehicle specific power (VSP) distributions, energy consumption rates, travel time and mileages. The estimation results are validated and compared with those derived from driving cycles and instantaneous speeds. It is found that the VSP distributions can capture the variation of the energy consumption relating to average speeds, and the results are unbiased with average errors less than 1.9%, comparing with instantaneous speeds. It is practicable to employ the trajectories of ICEVs to model the activity of BEVs for energy consumption estimates, and the average errors are less than 2.7%.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.