Spectral upper bounds for the Grundy number of a graph

IF 0.7 3区 数学 Q2 MATHEMATICS
Thiago Assis, Gabriel Coutinho, Emanuel Juliano
{"title":"Spectral upper bounds for the Grundy number of a graph","authors":"Thiago Assis,&nbsp;Gabriel Coutinho,&nbsp;Emanuel Juliano","doi":"10.1016/j.disc.2024.114326","DOIUrl":null,"url":null,"abstract":"<div><div>The Grundy number of a graph is the minimum number of colors needed to properly color the graph using the first-fit greedy algorithm regardless of the initial vertex ordering. Computing the Grundy number of a graph is an NP-Hard problem. There is a characterization in terms of induced subgraphs: a graph has a Grundy number at least k if and only if it contains a <em>k</em>-atom. In this paper, using properties of the matching polynomial, we determine the smallest possible largest eigenvalue of a <em>k</em>-atom. With this result, we present an upper bound for the Grundy number of a graph in terms of the largest eigenvalue of its adjacency matrix. We also present another upper bound using the largest eigenvalue and the size of the graph. Our bounds are asymptotically tight for some infinite families of graphs and provide improvements on the known bounds for the Grundy number of sparse random graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114326"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004576","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Grundy number of a graph is the minimum number of colors needed to properly color the graph using the first-fit greedy algorithm regardless of the initial vertex ordering. Computing the Grundy number of a graph is an NP-Hard problem. There is a characterization in terms of induced subgraphs: a graph has a Grundy number at least k if and only if it contains a k-atom. In this paper, using properties of the matching polynomial, we determine the smallest possible largest eigenvalue of a k-atom. With this result, we present an upper bound for the Grundy number of a graph in terms of the largest eigenvalue of its adjacency matrix. We also present another upper bound using the largest eigenvalue and the size of the graph. Our bounds are asymptotically tight for some infinite families of graphs and provide improvements on the known bounds for the Grundy number of sparse random graphs.
图形格兰迪数的谱系上限
图形的格兰迪数是指在不考虑初始顶点排序的情况下,使用第一拟合贪婪算法为图形正确着色所需的最少颜色数。计算图形的格兰迪数是一个 NP-Hard(近乎困难)问题。从诱导子图的角度来看,有这样一个特征:当且仅当一个图包含一个 k 原子时,该图的格兰迪数至少为 k。在本文中,我们利用匹配多项式的特性,确定了 k 原子的最小最大特征值。有了这一结果,我们根据图的邻接矩阵的最大特征值提出了图的格兰迪数上限。我们还利用最大特征值和图的大小提出了另一个上限。对于某些无限图族,我们的上界是渐近紧密的,并且改进了稀疏随机图的格兰迪数的已知上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信